LOSS OF COOLANT ACCIDENT ANALYSIS FOR THE UNIVERSITY OF TEXAS AT AUSTIN TRIGA REACTOR

G.KLINE, 2015
Table of Contents

List of Figures .. 2

List of Tables .. 2

Introduction ... 3

UT TRIGA Characteristics ... 3

- Decay Heat ... 3
- Fuel Element Geometry ... 4
- Fuel Element Thermodynamic properties .. 4

Basis of Thermodynamic Analysis .. 5

- Stored Energy ($\rho \cdot V \cdot cp \cdot T$) .. 5
- Energy Generation (q_{gen}) ... 5
- Conduction Heat Transfer (q_{cond}) .. 5
- Convection Heat Transfer (q_{conv}) .. 6

The UT LOCA Model ... 7

- Coolant Air Temperature ... 7
- Finite Element Model Geometry and Basis[12] ... 11
- Steady State Finite Element Analysis ... 12
- Transient Finite Element Analysis .. 15

Model Validation ... 15

- Comparison of TRACE and the UT MATLAB model Steady State Temperature Profile ... 16

Comparison of FT2 Observations and Calculations (TRACE, UT MATLAB Model) Steady State Temperature Response to Power Operation ... 17

Comparison of FT2 Observations and Calculations (TRACE, UT MATLAB Model) Transient Temperature Response to Shutdown from Normal Operations ... 17

Summary .. 18

Results and Parametric Variation .. 18

References ... 21

Code .. 22

- UT LOCA Model .. 22
- Channel Air Temperature ... 30
List of Figures

Figure 1. Axial Peaking Factor in Fuel Element ... 4
Figure 2. Channel Air Model Geometry .. 8
Figure 3. Channel Air Iterative Segment .. 9
Figure 4. Finite Element Radial Geometry .. 11
Figure 5. Finite Element Energy Balance ... 13
Figure 6. TRACE and UT LOCA model steady state temperature profiles 16
Figure 7. Comparison of Temperatures from Calculations and Observations at Varying Power Levels 17
Figure 8. Fuel Temperature, Measuring Channel & Calculations Following Reactor Scram 18
Figure 9. LOCA Cladding Temperature vs Time ... 19
Figure 10. Region of Acceptable Operations for Fuel Element Specific Power and Air Temperature 19
Figure 11. Peak Fuel Temperature during Loss of Coolant Accident 20

List of Tables

Table 1. Conduction and Convection Terms: .. 13
Table 2. Generation and Temperature Independent Terms .. 14
Table 3. Matrix Elements ... 14
Table 4. Matrix Formula: .. 14
Introduction

Recent relicensing called for a study of fuel cladding response to a Loss of Coolant Accident (LOCA). Focusing on the maximum cladding temperature achieved.[1], [2] To facilitate this a one-dimensional radial model was created to solve for the peak temperature in the core limited area.

The loss of coolant accident (LOCA) analysis assumes steady state reactor operation at equilibrium (limiting core configuration conditions) followed by an instantaneous reactor scram with the water cooling simultaneously replaced with air cooling. The analysis models radial heat transfers from the center of the element outward to the air at the axial location/segment of the hot channel fuel element with the maximum specific axial power.

This LOCA analysis includes (1) an overview of the analysis, (2) specific characteristics of UT TRIGA system, (3) the basis of thermodynamic analysis, (4) development of the UT finite element analysis model, (5) validation of the model against independent analytical method and against measured data, and (6) analysis of the thermodynamic characteristics following a LOCA with initial conditions established by the limiting core configuration.

UT TRIGA Characteristics

The University of Texas TRIGA mk. II uses LEU 8.5wt% U with a ZrH ratio of 1.6. The physical properties of the fuel are taken from Simnad[3] while the decay heat transient is taken from University of Kansas[4]. Decay heat is assumed to have the same spatial distribution as power generation during operation. Core limiting configurations were calculated using neutronics analysis.

Decay Heat

Calculations with TRACE indicate the maximum power for a fuel element with an acceptable critical heat flux ratio of 2.0 is slightly less than 24kW. Neutronics analysis with the fuel element divided into 15 equal axial segments shows the maximum power generation within a single axial segment is 1.2 times the average segment. The decay power fraction remaining after an abrupt shutdown is found by the equation below:

\[
R(t) = \frac{0.04856 + 0.1189 \cdot \log_{10} t - 0.103 \cdot (\log_{10} t)^2 + 0.000228 \cdot (\log_{10} t)^3}{1 + 2.5481 \cdot \log_{10} t - 0.19632 \cdot (\log_{10} t)^2 + 0.05417 \cdot (\log_{10} t)^3}
\]

(1)

The fuel temperature of the element producing the maximum power level in the core, the “hot channel,” is the most severe condition radially in the core, so its most limiting axial segment is the highest rate of heat production in the core. Thus, this is where the LOCA is analyzed.
For the limiting case, the maximum specific power and the decay power fraction in the fuel element is calculated from the maximum axial peaking factor for the fuel element using:

\[q_{\text{gen},i}(t, r) = 1.2 \cdot q_{\text{gen}}(r) \cdot R(t) \] \hspace{1cm} (2)

The 1.2 is a peaking factor from the SCALE analysis, this also provides the radial flux distribution.

Fuel Element Geometry

The fuel element model in this analysis is a set of concentric cylinders representing a zirconium rod at the center, the fuel matrix, a gas-gap between the fuel and cladding, and cladding. The dimensions are taken from the GA drawings and UT Technical Specifications. The Zirconium fill rod radius is 0.003175 m. The fuel matrix outer diameter is 1.47 in (0.018771 m) diameter. The gas gap is approximately 0.005 in (1.97E-5 m). Cladding is 0.020 in (0.000508 m) thick. The total heated length of the fuel (section with Zr-U fuel matrix) is 15 in, segmented for thermal hydraulic analysis into 15 equal lengths leaving a height of 0.0254 m.

Fuel Element Thermodynamic properties

Simnad[3] provides a number of mechanical characteristics and equations for fuel quantities. The thermal conductivity \((k)\) is given, density is calculated from a given equation for a specific Zr:H ratio of 1.6. Density is based off of an equation for the 8.5 wt.% U:

\[\rho_{\text{Fuel}} = \frac{1}{\frac{U_{\text{wt}}}{\rho_U} + \frac{(1 - U_{\text{wt}})}{\rho_{\text{Zr}}}} \] \hspace{1cm} (3)
Where $U_{\text{wt\%}}$ is uranium weight per cent, ρ_U is the density of uranium, and ρ_Z is the density of zirconium. Simnad provides the temperature (T) dependent volumetric heat capacity ($c_{p,\text{vol}}$):

$$
c_{p,\text{vol}} \left(\frac{J}{m^3 K} \right) = 2.04 + 4.17e - 3 \cdot T
$$

(4)

Specific heat capacity ($c_{p,\text{fuel}}$) is calculated as the ratio of eqn. (4) to eqn. (3).

$$
c_{p,\text{fuel}} \left(\frac{J}{kg \cdot K} \right) = \frac{\rho_{\text{Fuel}}}{c_{p,\text{vol}}}
$$

(5)

Basis of Thermodynamic Analysis

The steady state and transient analyses can be solved by building a heat balance across a series of finite elements whose energy relation can be built from the following equation[5], [6]:

$$
\dot{E}_{st} = \dot{E}_{gen} + \dot{E}_{in} - \dot{E}_{out}
$$

(6)

Where, \dot{E}_{st} is the stored energy in the structure, \dot{E}_{gen} is energy generated within the structure, \dot{E}_{in} is energy transferred into the structure, and \dot{E}_{out} is the energy transferred out of the structure. This model translates physically into:

$$
\rho \cdot V \cdot c_p \cdot \frac{dT}{dt} = q_{gen} + q_{cond} + q_{conv}
$$

(7)

Stored energy (and the associated temperature change) is a function of material density (ρ), specific heat (c_p), volume (V), and the conduction, convection, and generation terms (q_{gen}, q_{cond}, and q_{conv} respectively).

Stored Energy ($\rho \cdot V \cdot c_p \cdot T$)

Energy storage is the time dependent material property used in the transient portion of the analysis. It is the dominant factor in peak temperatures as it represents a thermal inertial term[5].

Energy Generation (q_{gen})

Energy generation in the core is considered a result of fission effects in the fuel only and is considered axially homogenous within the section and radially distributed.

Conduction Heat Transfer (q_{cond})

Heat transfer through conduction within the radius of the fuel element and cladding is modelled with Fourier’s law of conduction using radial geometry:

$$
q_{cond} = -k \cdot A_s \cdot \frac{dT}{dr}
$$

(8)
Where \(k \) is thermal conductivity, \(A_s \) is the surface area through which heat transfer occurs, and \(\frac{dT}{dr} \) is the rate of temperature change with respect to radial displacement. As recommended[7], the gas gap is approximated as thermal conductivity, calculated by the gas gap heat transfer coefficient divided by the thickness of the gap.

Convection Heat Transfer (\(q_{\text{conv}} \))

Convection heat transfer is modelled using Newton’s law of cooling[5], [6]:

\[
q_{\text{conv}} = h \cdot A_s \cdot (T_s - T_{\text{inf}}) \tag{9}
\]

Where the outer surface area is \(A_s \), the wall temperature is \(T_s \), and the bulk coolant temperature is \(T_{\text{inf}} \), and the heat transfer coefficient is \(h \).

The convection heat transfer coefficient is calculated from dimensionless numbers. For natural convection, the significant dimensionless numbers are the Prandtl (\(Pr \)), Grashof (\(Gr \)), and modified Rayleigh (\(Ra \)) numbers. These values, combined with Nusselt (\(Nu \)) correlations, lead to the heat transfer coefficients which are used to find the energy transferred via convection[5], [8].

a. The Prandtl number is a measure of the fluid’s viscous diffusion (\(\nu \)) to kinematic diffusivity (\(\alpha \)) of the fluid:

\[
Pr = \frac{\nu}{\alpha} \tag{10}
\]

Where \(\alpha \) is the thermal diffusivity of the fluid, defined as:

\[
\alpha = \frac{k}{c_p \cdot \rho} \tag{11} \tag{6}
\]

b. The Grashof number is a dominant number in natural circulation. It is dependent on both surface temperature and channel temperature, fluid expansion coefficient, gravity, dynamic viscosity and channel dimensions. The Grashof number is defined as:

\[
Gr_s = \frac{g \cdot \beta \cdot (T_s - T_{\text{inf}}) \cdot s^3}{\mu^2} \tag{12}
\]

Where \(g \) is the acceleration due to gravity, \(\beta \) is the thermal expansion coefficient of the coolant, \(s \) is the channel width, and \(\mu \) is the dynamic viscosity of the coolant.

c. The Rayleigh number is a function of buoyancy effects and momentum vs viscous diffusions and calculated as below[8]:
\[Ra_s = Gr_s Pr = \frac{g \beta \rho^2 (T_{wall} - T_{fluid}) s^3}{\mu^2} Pr \]

(13)

Where \(s \) subscript implies channel width is dimension of interest.

d. The Nusselt number relates the conductive and convective heat transfer effects of the fluid. The heat transfer is driven by the temperature difference and is found through the Nusselt number. A correlation for natural circulation of air in vertical channels for the Nusselt number is [8]:

\[Nu_s = \left\{ \frac{576}{Ra_s \left(\frac{s}{dy} \right)^2} + \frac{2.87}{Ra_s \left(\frac{s}{dy} \right)^{1/2}} \right\}^{-1/2} \quad (14) \]

e. The average heat transfer coefficient, \(\bar{h} \), can be found from the average Nusselt number using [5], [9]:

\[\bar{h} = \frac{Nu_s \cdot k}{s} \quad (15) \]

The UT LOCA Model

The University of Texas Loss of Coolant model is a combination of finite element analysis (FEA) for steady state, and transient fuel conditions, as well as an air channel analysis sub-section to provide effective estimation of air channel heating. This channel sub-model leads to proper parametric variation analysis by giving a real world upper bounding temperature.

Coolant Air Temperature

Parametric analysis ranges needed to be quantified prior to running. In order to find the limiting values of the channel air temperature, a separate, one dimensional vertical model was created independent of the FEA model and geometry used in finding the fuel temperatures. It utilizes an elemental, vertical, constant temperature surface interfacing with buoyant air. See the figure below for details:
The temperature entering the bottom of the channel surrounding the fuel element is the nominal room air temperature following a loss of coolant, 16°C. This value is based on the observed long term average air temperature for the UT TRIGA Reactor Bay.

The rise in temperature is found by segmenting the pin vertically. Each iteration has a specific heat flux relative to the temperature difference between the surface and the air, its specific dimensionless parameters, and a constant surface temperature that is user defined. The limiting conditions set the surface temperature at 1150°C as this was the maximum allowable temperature in the fuel, making it the maximum surface temperature. Also, it gives a built in margin to the true maximum air temperature if the surface was the standard limit of 950°C[10].

The change in air temperature across each segment is a function of the heat generated in the segment and the heat transfer coefficient calculated from local non-dimensional parameters. Heat transfer characteristics in convection depend on intrinsic and extrinsic material properties and fluid temperature, with the heat transfer coefficient calculable though the use of dimensionless numbers. The outlet temperature of one region is the inlet temperature of the next. The channel flow heat up model provided an order of magnitude estimation leading to proper parametric variation.
Fluid flow, and thus the characteristic velocity, is driven by natural convection and is dominated by the buoyancy driven numbers in the Rayleigh number (Ra_s), the product of the Grashof and Prandtl numbers which is driven by temperature difference.

a. The change in coolant temperature from fluid flow across a segment begins by finding the appropriate Rayleigh number (13) for the ith segment[8], then the segment’s Nusselt number (14), then the heat transfer coefficient (15). With the heat transfer coefficient now found, the heat flux (q'') is found using:

\[q'' = h_i \cdot (T_s - T_{infl,i}) \]

Where \(T_s \) is the cladding surface temperature and \(T_{infl,i} \) is the heat sink temperature.

b. Heat flux is used to find the Modified Rayleigh number. For uniform wall heating, the modified Rayleigh (Ra*)[11] is:

\[Ra_s^* = \frac{g \cdot \beta \cdot q'' \cdot \rho^2 \cdot c_p \cdot s^4}{\mu \cdot k^2} \]

Where \(g \) is the acceleration due to gravity, \(\beta \) is the thermal expansion coefficient, and \(\mu \) is dynamic viscosity.

c. The modified Rayleigh number leads to the characteristic channel velocity, \(U_z \). [8]:
The change in temperature for fluid flow across a segment of the fuel element along the (axial) direction of flow can be calculated with:

\[Q_i = \dot{m} \cdot c_p \cdot \Delta T \]

(d) Where the \(\Delta T \) is calculated as:

\[\Delta T = \frac{q'' \cdot A_{FE,i}}{\rho \cdot A_{flow} \cdot U_z \cdot c_p} \]

Where \(U_z \) is calculated from eqn. (18). This \(\Delta T \) is added to the segment’s inlet temperature and becomes the inlet temperature for the next segment. The last segment’s channel temperature represents the culmination of all the heating:

\[T_{inf,i} = T_{inf,i-1} + \Delta T_i \]

II. As an independent calculation to determine limiting values of air temperature, the temperature rise was found through standard gas laws.

(a) The characteristic velocity gives a stay time for the air (heated length divided by characteristic channel velocity). This allows the change in energy to be calculated as follows:

\[dE = q'' \cdot A_s \cdot t_{stay} \]

Where \(t_{stay} \) is the time the cooling air is in contact with the cladding surface.

(b) By using the density of air and the volume of the channel, the mass of the air in the space at any given time can be found, by neglecting density changes. Using the equation below, the change in temperature can be found:

\[q = m c_v \Delta T \rightarrow \]

\[\Delta T = \frac{q}{m c_v} \Rightarrow T_f = T_{init} + \Delta T \]

III. Results of calculations for limiting values of the channel air temperature[10]

These two methods routinely agreed across variations in surface temperatures. The geometry in use in reality is far more complex than this simple sub model accounts for, so order of magnitude correlation was acceptable. Especially since the model’s purpose
was to define reasonable limits for parametric variation. The limiting channel temperature, of 16°C inlet and 950°C surface temperature, is 35.37°C. The bounds selected were based on the 12.5kW fuel element reaching the limiting surface temperature.

Finite Element Model Geometry and Basis [12]

The calculation of temperature distribution in the fuel element is accomplished by using the principles of finite element analysis. The fuel element geometry is based on a cylindrical segment. The axial height of the segment is the total heated length (0.381 m) divided by the number of axial segments (15 in this model). Radial dimensions are taken from General Atomics drawings, as specified earlier.

![Finite Element Radial Geometry](image)

Figure 4. Finite Element Radial Geometry

The FEA radii distribution used in computation was selected based on both parameter validation and computational power available. It was essential to adequately capture the temperature effects in the smaller outer geometries and transitions. Thus the, dr, value near the outer portion is smaller than in the center fuel meat area. This saved on the size of the solution array, but still allows necessary detail. This is a similar method of grid distribution used in higher end CFD programs.
The limiting geometric parameter of concern is the Biot number [5], which relates convective and conductive aspects of the element to its volume to surface area ratio. It is determined using the equation below:

\[Bi = \frac{h \cdot L_c}{k} \] \hspace{1cm} (25)

Where, the characteristic length, \(L_c \), is defined as the volume to surface area ratio:

\[L_c = \frac{V}{A} \] \hspace{1cm} (26)

Differential radii in the outer portions of the model were chosen to most accurately subdivide the real geometry of the cladding and the gas gap. Internal fuel differential radii were chosen to minimize the Biot number. In addition to the Biot number, the Fourier number is a transient figure of merit related to the time response and geometry:[5]

\[Fo = \frac{\alpha \cdot t}{L_c} \] \hspace{1cm} (27)

According to Bergman[5], the Biot number must remain below 0.1, and the Fourier number must remain below 0.5 for 1D lumped parameter FEA to be valid. This was the merit to which the differential radii are chosen.

Steady State Finite Element Analysis

To create a valid transient condition, a valid steady state initial condition must be found, first. To facilitate this, each element is assessed using an energy balance equation across the element. Since the steady state model is not time dependent, the energy balance is reduced to:

\[\dot{E}_{in} + \dot{E}_{gen} = \dot{E}_{out}; \quad \dot{E}_{out} = 0 \implies \dot{E}_{in} + \dot{E}_{gen} = 0 \] \hspace{1cm} (28)

In this analysis, all energy flow is considered into the element. Figure 5 illustrates an element energy balance and temperature definition relationship.
A matrix form of this energy balance is developed to solve for the temperature profile.

\[A\vec{x} = \vec{b} \] (29)

Where, \(\vec{x} \) is a vector representing the radial temperature profile, and \(\vec{b} \) is a vector representing the energy generation and non-temperature dependent terms. Below is the development of the steady state finite element equations. The cladding end element is the only element containing a convection term, while fuel elements are the only ones containing generation terms. The following relationships are incorporated in the elements of the matrix equations[12]

Table 1. Conduction and Convection Terms:

<table>
<thead>
<tr>
<th>Term</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_{gen,SS,r})</td>
<td>(q_{max} \cdot q(r) \cdot \pi \cdot dy \cdot (r_{2i}^2 - r_{2i-2}^2))</td>
</tr>
<tr>
<td>(q_{conv,SS})</td>
<td>(h_{water} \cdot \pi \cdot r_{max} \cdot dy \cdot (T_s - T_{inf}))</td>
</tr>
<tr>
<td>(q_{cond,SS})</td>
<td>(2 \cdot \pi \cdot dy \cdot k_{fuel} \cdot \left(T_{i\pm1} - T_i \right) \cdot \ln \left(\frac{r_{larger}}{r_{smaller}} \right))</td>
</tr>
</tbody>
</table>
Table 2. Generation and Temperature Independent Terms

\[b_i = -q_{\text{max}} \cdot \pi \cdot dy \cdot (r_{2i}^2 - r_{2i-2}^2); \quad (33) \]

\[b_{\text{end}-1,4} = 0; \quad \text{(No heat generation in cladding/gas)} \quad (34) \]

\[b_{\text{end}} = -h_{\text{water}} \cdot \pi \cdot r_{\text{end}} \cdot dy \cdot T_{\text{inf}} \quad (35) \]

Table 3. Matrix Elements

\[A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_j \\ a_{\text{end}} \end{bmatrix} \quad (36) \]

\[a_1 = \begin{bmatrix} 2 \cdot \pi \cdot dy \cdot k_{\text{fuel}} \cdot (T_{i-1} - T_i) \\ \ln \left(\frac{r_2}{r_1} \right) \end{bmatrix}, \quad \begin{bmatrix} -2 \cdot \pi \cdot dy \cdot k_{\text{fuel}} \cdot (T_{i+1} - T_i) \\ \ln \left(\frac{r_2}{r_1} \right) \end{bmatrix} \quad \ldots \quad (37) \]

\[a_i = \begin{bmatrix} \frac{2 \cdot \pi \cdot dy \cdot k_{\text{fuel(gas,clad)}} \cdot (T_{i-1} - T_i)}{\ln \left(\frac{r_{2i-1}}{r_{2i-3}} \right)} \\ \frac{-2 \cdot \pi \cdot dy \cdot k_{\text{fuel(gas,clad)}} \cdot (T_{i+1} - T_i)}{\ln \left(\frac{r_{2i+1}}{r_{2i-1}} \right)} \end{bmatrix}, \quad \begin{bmatrix} \frac{2 \cdot \pi \cdot dy \cdot k_{\text{fuel(gas,clad)}} \cdot (T_{i-1} - T_i)}{\ln \left(\frac{r_{2i-1}}{r_{2i-3}} \right)} \\ \frac{-2 \cdot \pi \cdot dy \cdot k_{\text{fuel(gas,clad)}} \cdot (T_{i+1} - T_i)}{\ln \left(\frac{r_{2i+1}}{r_{2i-1}} \right)} \end{bmatrix} \quad \ldots \quad (38) \]

\[a_{\text{end}} = \begin{bmatrix} \frac{2 \cdot \pi \cdot dy \cdot k_{\text{clad}} \cdot (T_{\text{end}-1} - T_{\text{end}})}{\ln \left(\frac{r_{\text{end}}}{r_{\text{end}-1}} \right)} \\ \frac{-2 \cdot \pi \cdot dy \cdot k_{\text{clad}} \cdot (T_{\text{end}} - T_{\text{end}-1})}{\ln \left(\frac{r_{\text{end}}}{r_{\text{end}-1}} \right)} + h_{\text{water}} \cdot \pi \cdot r_{\text{end}} \cdot dy \end{bmatrix} \quad (39) \]

Table 4. Matrix Formula:

\[\bar{T} = A^{-1} \cdot \bar{b} \quad (40) \]
The energy generation term in the element is a function of both its axial and radial position. The highest axial peaking factor (1.2) was used to represent the axial cylindrical segment generating the most power.

The radial peaking factor, \(q(r) \), is found through a curve fit to neutronics code output:

\[
q(r) = C_{axial,peak}q_{max}(247192r^3 - 5377r^2 + 45.882r + 0.7335)
\]

(41)

MATLAB was utilized to build and solve the equation set using native commands that maximize the efficiency and accuracy of the matrix inversion method.

Transient Finite Element Analysis

The transient portion of the model takes the initial steady state temperature profile and systematically walks it forward with time, explicitly. The basic concept of an energy balance is again used, with the time dependent components now considered in addition to the other terms. In the UT LOCA model the loss of coolant accident is considered to be instantaneous, and thus the cooling properties switch from water to air at the first iteration.

\[
\dot{E}_{st} = \dot{E}_{in} - \dot{E}_{out} + \dot{E}_{gen}; \quad \dot{E}_{out} = 0 \rightarrow \left(42\right)
\]

\[
\rho \mathcal{V} C_p \frac{dT}{dt} = q_{cond} + q_{conv} + q_{gen} \rightarrow \left(43\right)
\]

\[
\rho \mathcal{V} C_p \left(\frac{T_i^{p+1} - T_i^p}{\Delta t}\right) = q_{cond} + q_{conv} + q_{gen} \rightarrow \left(44\right)
\]

This leads to the transient analysis equation set which is related to the steady state equations as follows:

\[
T_i^{p+1} = \frac{\Delta t}{\rho \mathcal{V} C_p} [a_i] + T_i^p \rightarrow \left(45\right)
\]

The differential time element is selected based on the Fourier number previously mentioned. Additionally, the code calculates a number of output values including a two-dimensional matrix \(\mathcal{B} \) whose horizontal dimension represents the radial temperature distribution and whose vertical axis represents time. This allows three essential model parameters to be extracted. First, the cladding surface temperature versus time is extracted and used to find peak cladding temperature. Second, the temperature profile across the pin at \(t_i \) can be found. Third, the maximum temperature both radially and through time can be found[12].

Model Validation

After completion of the model building, a series of validation parameters and tests were run. The first of these was to ensure the steady state temperature profiles between the UT code and the TRACE code matched. Next was to ensure the temperature profiles of a known operating conditions were properly simulated. Third, a sub model was developed using water properties
and the same decay curve. A real reactor scram was recorded using in-house ICS recording\cite{13} whose results were then compared to the model output. Thus, SS and transient portions were tested.

Comparison of TRACE and the UT MATLAB model Steady State Temperature Profile

The core configuration contains 114 fuel elements, with a core radial peaking factor derived from SCALE physics calculation for the core (prior to January 2016) of 1.6, and a maximum axial peaking factor of 1.2. The current normal operating power is 950 kW. The power generated in the maximum segment of the hot channel for comparison using data prior to January 2016 is therefore 12.5 kW.

The steady state solution using water coolant was developed for the maximum power level in a fuel element operating at 12.5 kW and compared to the TRACE calculations Figure 6. The TRACE and FEA calculations are in substantial agreement with experimental data as shown in the figure below:

![Initial Pin Temperature Profile vs radius](image)

Figure 6. TRACE and UT LOCA model steady state temperature profiles
Comparison of FT2 Observations and Calculations (TRACE, UT MATLAB Model) Steady State Temperature Response to Power Operation

The MATLAB finite element analysis was applied at power generation in an element from 200 W to the 12.5 kW, and the maximum element temperature compared to the TRACE and FT2 measurements (taken prior to January 2016) across the range.

The TRACE and the MATLAB based steady state temperature calculations in radial locations associated with thermocouples are essentially the same. The error is considered acceptable, as the UT model does not consider the effects of nucleate boiling and varying velocity profiles, as Figure 7 below shows.

![Comparison of Temperatures from Calculations and Observations at Varying Power Levels](image)

Figure 7. Comparison of Temperatures from Calculations and Observations at Varying Power Levels

Comparison of FT2 Observations and Calculations (TRACE, UT MATLAB Model) Transient Temperature Response to Shut down from Normal Operations

Transient fuel temperature was observed following a shutdown from power operations at 950 kW (FT2 Data). Calculations were performed to simulate the transient using TRACE (TRACE Calc.) and MATLAB based model (UT MATLAB).
Summary

Comparison of fuel temperature measured channel data to calculated fuel temperatures during steady state and transient conditions is in good agreement. The agreement between observations and calculations during steady state operations suggests the method is fundamentally correct. The agreement between observations and calculations during transient operations suggests the method will provide reasonably accurate time-dependent calculations.

Results and Parametric Variation

The UT MATLAB model calculation was performed for various values of both air channel temperature and fuel element specific power. The cladding temperature of the fuel element segment generating the highest power in the core is provided in Figure 9 following a shutdown from a limiting operation of 23kW in the element with air cooling at inlet air temperature equal to UT reactor bay nominal temperature of 16°C.
Fuel element power level and inlet air temperature were varied to provide an indication to sensitivity to the parameters. Air inlet varied from 16°C to 600°C, while fuel element power varied from 12.5kW per pin to 27kW per pin. This ensured all operational areas were covered, and sufficient data existed to curve fit. Figure 11 shows the region of interest in this output.

Figure 9. LOCA Cladding Temperature vs Time

Figure 10. Region of Acceptable Operations for Fuel Element Specific Power and Air Temperature
Figure 11. Peak Fuel Temperature during Loss of Coolant Accident

For reactor bay air at 16°C, the maximum fuel element power prior to LOCA initiation that could achieve less than 950°C fuel cladding temperature with air cooling is 23.6 kW. At 23 kW generated in the fuel element during operation prior to the LOCA initiation (the maximum power generated in a fuel element in the limiting core configuration), air inlet temperature inlet less than 35°C is calculated not to exceed 950°C fuel cladding temperature. Therefore, a LOCA following normal steady operation with a fuel element operating at 23 kW will not exceed the fuel temperature safety limit. For nominal UT operations of 12.5kW, an air inlet temperature of up to 402°C can exist at the beginning of the casualty to still remain below the 950°C cladding temperature.

The UT LOCA model takes place at the point of highest axial power production and only transmits energy radially. In reality the axial conduction effects would work to reduce the overall temperature profile internally, and the additional surface area would help the convective terms. This can be inferred from the lower power production and the high thermal conductivity of the fuel meat. Given the one-dimensional nature of the UT LOCA model, the results for maximum fuel element analysis can be considered conservative.

In reality, axial power distribution will result in heat conduction that reduces the peak temperature; since axial conduction is not considered in this analysis and calculated temperatures will be therefore be conservatively higher compared to actual temperatures.
References

Code

UT LOCA Model

%%% HEADER
%%% UT LOCA
%%% Author: Greg Kline
%%% Date: 1/21/2015
%%% Revision 8.5.2
%%% Revision Changes:
%%% - begin mapping a 1D transient, radial, air cooled naturally circulated
%%% fuel pin immediately after shut down with decreasing decay heat
%%% - 6.0 has liner transient development.
%%% - 6.1 has radial
%%% - 6.2 added variable heat transfer coefficient
%%% - 6.3 added variable specific heat capacity and improved check feature
%%% - 6.4 worked on adjusted dt and shorter t vector
%%% - 6.5 added function for channel heat calculation
%%% Revision 7
%%% - 7.0 added radial flux distribution
%%% - 7.1 added titles to graphs that change
%%% Revision 8
%%% - 8.0 changed the physical properties of the pin to reflect both the 304SS
%%% cladding and the gas gap possibly existent in the pin
%%% - 8.1 Working to match TRACE
%%% - 8.2 Cleaned up code and changed n to meet actual cladding thickness and
%%% and reduce the gap width to values more realistic
%%% - 8.3 Updating transient solution to fix it for multiple materials
%%% - 8.4 Updated the length vector to reduce points between the fuel segments
%%% - 8.4.1 Changed gas from cp to cv. Since the gas gap volume is considered
%%% constant throughout the process
%%% - 8.4.2 Fixed parenthesis bug
%%% - 8.5 Made it a function
%%% - 8.5.1 add natural circulation channel Nusselt number relationship
%%% - 8.5.2 adjusted for a 30C initial water temperature
%%% - 8.5.3 Added channel air temperature function to the file for the FEM
%%% %
%%% %
%%% % function [mT, t_max] = LOCA_8_5_3_FEM(qtp, Tia)
%%% % qtp - Power in the fuel element (W)
%%% % Tia - Air temperature at time of LOCA (C)
%%% % mT - Maximum cladding surface temperature (C)
%%% % t_max - Time at which the maximum temperature occurs (s)
%%% %
%%% FEM Pseudo Code
%%% - Constants
%%% - Fuel Constants from Simnad, etc.
%%% - Fuel geometry
%%% - Model Constants
%%% - Air and water material properties
%%% - Model time parameters
%%% - Differential time steps
%%% - Time splits
%%% - Build time vector
%%% - Build decay heat fraction
%%% - Find specific power
%%% - Heat transfer coefficients
%%% - FEA building
%%% - number of points (n)
%%% - build radial spacing
%%% - find the radially fractioned specific energy generation
%%% - Find the initial Biot and Fourier values
%%% - Steady State Initial Condition
%%% - RHS
%%% - Values of generation and temperature independent terms
%%% - LHS
%%% - Matrix of temperature interactions representing temperature
% dependent values of energy equation
% - Build the inner point
% - cladding points
% - Gas/fuel interface
% - inner fuel points
% - TRACE vector
% - Solve for the temperature profile in steady state
% - Transient problem
% - pre-allocate memory
% - Transient loop
% - find the dt for current time space
% - find the current dimensionless numbers for channel conditions
% - find the current heat transfer coefficient
% - find the current temperatures in the profile
% - find the current model validation values
% - check to see if it is the maximum so far
% - Outputs
% - Build a reduced point matrix to save memory
% - Find the maximum temperatures
% - Build output graphs
% % function [Tinf] = channel_air_temp_3_0(T_s, Tinit)
% % T_s - Surface temperature (C)
% % Tinit - Initial temperature of the inlet channel air (C)
% % Tinf - Channel outlet temperature (C)
% % Channel Air Pseudo Code
% - Geometry of fuel element
% - Geometry of air channel
% - Iterate up the pin vertically
% - Due back of envelope calculations
% - Outputs

function [mT, t_max] = LOCA_8_5_3_FEM(qtp, Tia)
tic
display('Initializing LOCA...');

%% CONSTANTS
% FUEL CONSTANTS
% Initial Temp for model VnV
T_init = 30;
% fuel initial pin power (W)
q_total_pin = qtp;
% Axial Peaking Factor
axial_peaking = 1.2435;

%% FUEL CONSTANTS
% pin height (m)
pin_height = .381;
% Pin radius (m)
radius_pin = 0.018771;
inner_radius = 0.003175; %.125in
% clad width (m)
dl_clad = 0.000508;
% vertical sections (#)
vertical_sections = 15;
% enrichment percentage (fraction) [UT SAR]
Rich = .197; % 19.7%
% density (kg/m^3) [Simnad]
density_U = 19070;

% density of ZrH based on ratio (kg/m^3)[Simnad]
density_Zr = 1 / (.1541 + .0145 * 1.6) * 1000;

% Thermal conductivity fuel [Simnad]
% (cal / s cm C)
k_fuel_cal = .042;
% (W / m*K)
k_fuel = 17.5730; % [Simnad]

% Avogadro’s number (atoms/mol)
N_A = 6.022e23;

% Molar mass (g/mol) [Burns]
M_U = 238.07;

% weight percent of Uranium in Triga fuel [UT SAR]
U_wt = .085;

% Material Densities (kg/m^3)
density_fuel = 1 / (U_wt / density_U + (1 - U_wt) / density_Zr); %[Simnad]
density_gas = .08375; % PNNL
density_304SS = 7740; % makeitfrom.com

% volumetric heat capacity from Simnad (J/ m3 K)
cp_fuel_vol = (2.04 + 4.17e-3 * T_init) * 1e6;

% Convert to specific heat (J/kg K)
cp_fuel = cp_fuel_vol / density_fuel;
cp_304SS = 500;
cp_gas = 14.53e3; % PNNL - >
cv_gas = 10.16e3; % Hydrogen

% thermal diffusivity (m^2 / s)
alpha_fuel = k_fuel / (cp_fuel * density_fuel);

% pin volume (m^3)
vol_pin = pi * pin_height * ((radius_pin-dl_clad)^2 - inner_radius^2);

% specific pin power (W/m^3)
q_dot_max = q_total_pin / vol_pin;

% This is a slice of a potential 2D model of the pin (m)
dy = pin_height / vertical_sections;

% MODEL CONSTANTS
% Temperatures (C)
% find the value using sub-model function
T_inf_air = 1.5 * channel_air_temp_3_0(1150, 16);

% option to set air
% T_inf_air = 20; %Tia;

% Water temperature to build initial condition profile (C)
T_inf_water = 48;

% display temperatures
display(sprintf(‘T_inf_air is %3.2f C’ , T_inf_air));

% Thermal Conductivities (W/mK)
k_air = 0.0257; % engineering toolbox
k_304SS = 16.2; % makeitfrom.com

% Prandtl Number (Pr)
Pr_air = .713;
Pr_water = 1.76;

% Kinetic Viscosity (m^2/s)
kinetic_viscosity_air = 15.11e-6;
kinetic_viscosity_water = .279e-6;

% Expansion Coefficient (1/K)
B_air = 3.43e-3;
B_water = .207e-3;

% Gradient Prandtl (gPr)
gPr_air = (.75 * Pr_air)^.5 / (.609 + 1.221 * Pr_air^.5 + 1.238 * Pr_air^.25);
gPr_water = (.75 * Pr_water)^.5 / (.609 + 1.221 * Pr_water^.5 + 1.238 * Pr_water^.25);

% Gravity (m/s^2)
gravity = 9.8066;

%% MODEL TIME PARAMETERS
display(sprintf('Pin power at time 0- is %5.2f W', q_total_pin));

% TIME VECTOR
% Time (s)
dt1 = .00025;
dt2 = .0013;
dt3 = .0015;

% Time to split the dt (s)
t_split1 = 1000;
t_split2 = 2000;

% Time vector for LOCA build (s)
t = [0:dt1:t_split1 t_split1+dt2:t_split2+t_split2+dt3:t_split3:17000];

% Time for decay heat (log(s))
log_t = log10(t);

% Decay power and radial peaking
% Decay Power fraction with time (dimensionless)
Decay_power_fraction = (.04856 + .1189 .* log_t - .0103 .* log_t.^2 + .000228 .* log_t.^3) ./
(1 + 2.5481 .* log_t - .19632 .* log_t.^2 + .05417 .* log_t.^3);

% Decay power with time (W)
Decay_power_t = (Decay_power_fraction * q_total_pin);

% Specific energy generation (W/m^3)
q_dot = axial_peaking * Decay_power_t / vol_pin; % 1.2 peaking factor

% HEAT TRANSFER COEFFICIENTS
% Water heat transfer, found using TRACE analysis
h_water = 3200;

% Gas heat transfer from KSU SAR [Whaley]
h_gas = 2.84e3;

% FEA BUILDING
% Finite element building
% number of x units to provide adequate spacing for clad and gas geometry(#)
n = 120;

% radius points for determining temperatures (m)
x1 = linspace(inner_radius, radius_pin, n);

% find dx for determination of indices to be used for different materials (m)
dx = x1(2) - x1(1);

% In order to capture clad and gas geometry but not over burden memory usage
% radial spacing near edges is smaller than the spacing in the fuel meat
% Fuel meat spaces (m)
xpt1 = linspace(inner_radius, radius_pin-6*dx, 19);

% Cladding gas spacing (m)
xpt2 = linspace(radius_pin-5*dx, radius_pin, 5);
% build the vector (m)
x = [xpt1 xpt2];

% clad points (#)
% find the number of x points to accurately represent the clad space (#)
pts_clad = ceil ((dl_clad / dx));

% gas points (#)
% set number of points gas gap occupies (#)
pts_gas = 1; % [Fenech]

% radius vector for determining the volumes for energy generation. Indexing
% requires the volume around a temperature to be halfway between the temperatures
% Fuel radial volume points (m)
rpt1 = linspace(inner_radius,radius_pin - 6*dx,2*19 -1);

% clad radial points (m)
rpt2 = linspace(radius_pin - 5*dx,radius_pin,2 * 5 -1);

% Build the radial vector m)
r_vol = [rpt1 radius_pin -5.5*dx rpt2];

% Set the radial fraction varied energy production (W/m^3)
q_r = axial_peaking * q_dot_max * (247192.*xpt1.^3 -5377.*xpt1.^2 +45.882.*xpt1 + .7335); % initial condition
q_r_1 = (247192.*xpt1.^3 -5377.*xpt1.^2 +45.882.*xpt1 + .7335); % radial percentage

% Gas thermal conductivity (W/m K)
k_gas = h_gas * dx;

% For transient problems, validity is reached only if:
% Biot # < .1
% Fourier number < .5(1D) .25 (2D) [Bergman]
L_c_1 = (pi*(r_vol(2)^2 - r_vol(1)^2)*dy) / (dy * 2 * pi * (r_vol(2) + r_vol(1)));
L_c_2 = (pi*(r_vol(end)^2 - r_vol(end-1)^2)*dy) / (dy * 2 * pi * (r_vol(end) + r_vol(end-1)));

Bi_1 = h_water * L_c_1 / k_fuel;
Bi_2 = h_water * L_c_2 / k_fuel;

Fo_1 = alpha_fuel * dt1 / L_c_1^2;
Fo_2 = alpha_fuel * dt1 / L_c_2^2;

check = Fo_1 * (1+Bi_1); % this must remain <= 1/2

%% STEADY STATE INITIAL CONDITION
% set up the FEA
% At = b => t = A-1b
display('Building initial condition');

% Right Hand Side (RHS)
The right hand side of the equation represents the energy generation and % non-temperature dependent values of the energy balance
% pre-allocate vector
b = zeros(length(x),1);

% Most internal fuel point
b(1) = -q_r(1) * pi * dy * (r_vol(2)^2 - r_vol(1)^2);

% Boundary with the fluid
b(end) = -h_water * pi * 2 * r_vol(end) * dy * T_inf_water; % OLD -q_r(end) * pi/6 * dy * (r_vol(end)^2 - r_vol(end-1)^2)

% Gas and Clad gaps
b(end-1) = 0; % No generation in SS or gap
b(end-2) = 0;
b(end-3) = 0;
b(end-4) = 0;

% Gas/Fuel interface
b(end-5) = -q_r(end-2) * dy * pi * (r_vol(end-4)^2 - r_vol(end-5)^2); % gas/fuel interface has half a region of generation

% Left Hand Side (LHS)
% pre-allocate matrix space
A = zeros(length(x));

% Most inner point
A(1,1) = -2 * pi * dy * k_fuel / log(x(2)/x(1));
A(1,2) = 2 * pi * dy * k_fuel / log(x(2)/x(1));

% Cladding Point
A(end,end-1) = 2 * pi * dy * k_304SS / log(x(end)/x(end-1));
A(end,end) = -2 * pi * dy * k_304SS / log(x(end)/x(end-1));

% Stainless gas interface
A(end-1,end) = 2 * pi * dy * k_304SS / log(x(end)/x(end-1));
A(end-1,end-2) = -2 * pi * dy * k_304SS / log(x(end)/x(end-2));

% Gas fuel interface
A(end-5,end) = 2 * pi * dy * k_fuel / log(x(end)/x(end-5));
A(end-5,end-4) = -2 * pi * dy * k_fuel / log(x(end)/x(end-4));

end

% Work to compare two different steady state temperature profile
% TRACE Temperatures (C)
T_mike = [420.53 420.53 414.33 406.19 397.12 387.41 377.34 366.92 356.28 345.40 334.25 322.86 311.21 299.33 287.25 274.90 266.92 256.28 245.40 234.25 222.86 211.21 200.33 198.25 187.41 174.90 166.92 156.28 145.40 134.25 122.86 111.21 100.33 98.25 94.41 83.90 74.25 64.90 55.40 45.40 35.25 ... 322.86 311.21 299.33 287.25 274.90 143.51 130.88];

% TRACE x values
xm = [3.18E-03 5.60E-03 7.26E-03 8.60E-03 9.76E-03 0.010801 0.011746 0.012621 0.013439 0.01421 0.014941 0.015638 0.016306 0.016947 0.017564 0.018161 0.018263 0.018771];

% Find the temperature vector using matrix inversion (C)
T = A\b;

%% TRANSIENT PROBLEM
display('Calculating transient matrix');

% pre-allocate a matrix of temperature vs time (C)
T_t = zeros(length(t),length(T));

% Set the initial condition from the steady state value found above (C)
T_t(1,:) = T;

toc
tic

% Set variables to track maximum metric values (dimensionless)
\(Bi_{\text{max}} = 0; \)
\(Fo_{\text{max}} = 0; \)
\(Ch_{\text{max}} = 0; \)

\% cp air (\(J/kg \ K \))
\(cp_{\text{air}} = 1.005 \times 1000; \)

\% density air (\(kg / m^3 \))
\(density_{\text{air}} = 1.205; \)

\% cv (\(J/kg \ K \))
\(cv_{\text{air}} = cp_{\text{air}} / 1.4; \)

\% Channel width (m)
\(width_{\text{channel}} = 0.0061976; \)

\% dynamic viscosity of air (\(kg / m \ s \))
\(dyn_{\text{vis}}_{\text{air}} = 1.846 \times 10^{-5}; \)

\% Explicit finite difference method
\textbf{for} \(j = 2:\text{length}(t) \)
\textbf{if} \(t(j) < t_{\text{split}}{1} \)
\(\text{dt} = dt_{1}; \)
\textbf{elseif} \(t(j) \geq t_{\text{split}}{1} \& \& t(j) < t_{\text{split}}{2} \)
\(\text{dt} = dt_{2}; \)
\textbf{else} \(\text{dt} = dt_{3}; \)
\textbf{end} \)

\% Update the command line
\textbf{if} \(\text{mod}(j,500000) = 0 \)
\textbf{display}(\text{sprintf('Iterating loop \%9.0f of \%9.0f of transient matrix \%3.2f percent complete', ...}
\text{j, length}(T_t(:,1)), j/length(T_t(:,1))*100)); \)
\textbf{end} \)

\% First find the Rayleigh and Nusselt numbers leading to heat transfer
\% coefficient based on time \(j \) del_{\text{T}}

\% Find the Ra_s [Kaminski]
\(Ra_s = (\text{gravity} \times B_{\text{air}} \times density_{\text{air}}^2 / (T_{t(j-1,end)} - T_{\text{inf air}}) \times width_{\text{channel}}^3) \)
\(/ dyn_{\text{vis}}_{\text{air}}^2; \)

\% find a denominator value for readability
\(RSL = Ra_s \times (width_{\text{channel}} / dy); \)

\% Nusselt number
\(Nu_s = (576 / RSL^2 + 2.87 / RSL^{1/2})^{-1/2}; \)
\(Nu_s = (576 / RSL^2 + 2.87 / RSL^{1/2})^{-1/2}; \)

\% Heat transfer coefficient (\(W/m^2 K \))
\(h = Nu_s \times k_{\text{air}} / width_{\text{channel}}; \)

\% Inner most point (C)
\(T_{t(j,1)} = \text{dt} / (density_{\text{fuel}} \times ((2.04 + 4.17e-3 \times T_{t(j-1,i)})*1e6/density_{\text{fuel}}) \times \pi \times dy \times (r_{vol}(2)^2 - r_{vol}(1)^2)) \times \pi \times dy \times (r_{vol}(2)^2 - r_{vol}(1)^2) \times dy + T_{t(j-1,1)}; \)

\% Mid fuel points (C)
\textbf{for} \(k = 2: \text{length}(T)-6 \)
\(T_{t(j,k)} = \text{dt} / (density_{\text{fuel}} \times ((2.04 + 4.17e-3 \times T_{t(j-1,k)})*1e6/density_{\text{fuel}}) \times \pi \times dy \times (r_{vol}(2^k)^2 - r_{vol}(2^{k-2})^2)) \times \pi \times dy \times (2^k)^2 - r_{vol}(2^{k-2})^2) \times dy + T_{t(j-1,k)}; \)
\textbf{end} \)

\% Fuel/gas point (C)
\(T_{t(j,\text{length}(T)-5)} = \text{dt} / (density_{\text{fuel}} \times ((2.04 + 4.17e-3 \times T_{t(j-1,\text{length}(T)-5)})*1e6/density_{\text{fuel}}) \times \pi \times dy \times (r_{vol}(2 \times (\text{length}(T)-5) - 1)^2 - r_{vol}(2 \times (\text{length}(T)-5) - 2)^2) \times dy + T_{t(j-1,\text{length}(T)-5)}; \)
+ (density_gas * cv_gas * pi * dy * (r_vol(2 * (length(T) - 5))^2 - r_vol(2 * (length(T) - 5) - 1)^2)) ...
+ (2 * pi * k_fuel * dy / log(x(length(T) - 5) / x((length(T) - 5) - 1)) * (T_t(j-1, length(T) - 5) - T_t(j-1, length(T) - 5) + 1)) ...
+ q_dot(j) * q_r_t(length(T) - 5) * pi * dy * ((r_vol(2 * (length(T) - 5) - 1)^2 - (r_vol(2 * (length(T) - 5) - 2))^2) ...
+ T_t(j-1, length(T) - 5);

% Gas/clad point (C)
T_t(j, length(T) - 4) = dt / (density_304SS * cp_304SS * pi * dy * ((r_vol(2 * (length(T) - 4)))^2 ...
- (r_vol(2 * (length(T) - 4) - 1))^2) ...
+ (density_gas * cv_gas * pi * dy * ((r_vol(2 * (length(T) - 4) - 1))^2 - (r_vol(2 * (length(T) - 4) - 2))^2)) ...
+ (2 * pi * k_gas * dy / log(x(length(T) - 4) / x((length(T) - 4) - 1)) * (T_t(j-1, length(T) - 4) - 1)) ...
- T_t(j-1, length(T) - 4)) + 2 * pi * k_304SS * dy / log(x(length(T) - 4) / x((length(T) - 4))) ...
* (T_t(j-1, length(T) - 4) + 1) - T_t(j-1, length(T) - 4);

% Mid clad points (C)
for kc = length(T) - 3:length(T) - 1
T_t(j, kc) = dt / (density_304SS * cp_304SS * pi * dy * ((r_vol(2 * kc))^2 ...
- (r_vol(2 * kc - 2))^2) ...
+ (2 * pi * k_304SS * dy / log(x(kc) / x(kc - 1)) * (T_t(j-1, kc - 1) - T_t(j-1, kc)) ...
+ (2 * pi * k_304SS * dy / log(x(kc + 1) / x(kc)) * (T_t(j-1, kc + 1) - T_t(j-1, kc)) ...
+ T_t(j-1, kc);
end

% Endpoint (C)
T_t(j, end) = dt / (density_304SS * cp_304SS * pi * dy * ((r_vol(end))^2 ...
- (r_vol(end - 1))^2) ...
+ h * pi * 2 * x(end) * dy * (T_inf_air - T_t(j-1, end)) ...
+ T_t(j-1, end);

% Checks on validity
% current Biot
Bi_t = h * L_c_1 / k_fuel;

% current Fourier
a_t = k_fuel / ((2.04 + 4.17e-3 * T_t(j-1, end)) * density_fuel);
Fo_t = a_t * dt / L_c_1^2;

% current check parameter
check_t = Fo_t * (1 + Bi_t);

% Track the worst of the numbers
if Bi_t > Bi_max
Bi_max = Bi_t;
end

if Fo_t > Fo_max
Fo_max = Fo_t;
t_max = t(j);
end

if check_t > Ch_max
Ch_max = check_t;
end

end
toc
tic

% OUTPUTS
% create a reduced matrix for display
% reduction factor
N_red = 10000;

% Reduced temperature matrix (C)
T_t_reduced = T_t(1:N_red:length(T_t(:,1)));

% Reduced time matrix (s)
t_reduced = t(1:N_red:length(T_t(:,1)));
% Max temp (C)
[mT, iT] = max(T_t(:,end));

% Time of maximum temperature (s)
t_max = t(iT);

% Maximum temperature over entire geometry and time (C)
max_max_temp = max(max(T_t))';

% Surface temp (C)
T_t_surface = T_t(:,end);
display('Building output graphs ');

% Initial condition plot
figure(1)
set(figure(1), 'Position', [200 300 1000 600]);
plot(x,T,m,'g', xm, T_mike, 'b')
xlabel(' Pin Radius (m) ');
ylabel(' Temperature (C) ');
title(sprintf(' Initial pin temperature vs radial point for water at %2.0f C and pin power of %2.1f kW', T_inf_water, q_total_pin/1000));
legend(sprintf(' Max Temp(C): %3.2f Approx. TC Temp(C): %3.2f Wh, %3.2f Gk %3.2f Wh, %3.2f Gk %3.2f Wh, %3.2f Gk', max(T), T(9), T_mike(1)-T_mike(end-2), T(1)-T(end-5), T_mike(end-2)-T_mike(end-1), T(end-5)-T(end-4), ... T_mike(end-1)-T_mike(end), T(end)-T(end), T_mike(end), T(end)), 'Location', 'SouthWest');

% Infinite pin profile
figure(2)
plot(x,T_t(end,:));
xlabel(' Pin Radius (m) ');
ylabel(' Temperature (C) ');
title(' Pin Temperature vs Radial Point at t(inf) ');
legend(sprintf(' Max Temp overall(C): %3.2f ', max_max_temp), 'Location', 'SouthEast');

% Surface temperature vs time
figure(3)
set(figure(3), 'Position', [200 500 1200 800]);
plot(t_reduced,T_t_reduced(:,end));
xlabel(' Time (s) ');
ylabel(' Temperature (C) ');
title(sprintf(' Pin Surface Temperature vs Time for Air at %2.0f C and Pin Power of %2.1f kW', T_inf_air, q_total_pin/1000));
legend(sprintf(' Max Surface Temp(C): %3.2f at %3.2f s, mT, t(T'), 'Location', 'SouthEast');

% clear giant matrix
clearvars T_t;
toc

Channel Air Temperature

% Channel Air Temperature
function [Tinf] = channel_air_temp_3_0(T_s, Tinit)

% UT LOCA
% Author: Greg Kline
% Date: 12/31/2015
% Revision 3.0
% % Revision changes:
% % 2.0
% % - add more accurate correlation for Nu and heat transfer coefficient
% % 3.0
% % - edit out wasted lines to allow integration in FEM code

tic
display('Initializing Channel Air Temp... ');

% Initial inlet temperature (C)
Tinit = 20; \%Tinit;
T_s = 950;

% Geometry
% vertical sections (#)
vertical_sections = 20;

% Pin radius (m)
% outer radius
radius_pin = 0.018669;

% Radius of cooling hexagon (m)
inner_hex = 0.0217678;
outer_hex = 0.025146;

% Total spatial area of cooling hex and pin (m^2)
total_space = \sqrt{3}/2 * (2 * inner_hex)^2;

% Area of pin radially (m^2)
Area_pin = \pi * radius_pin^2;

% Area of cooling hexagon around pin (m^2)
area_cooling = total_space - Area_pin;

% Area of the flow gap (m^2)
% given the geometry of meeting hexagons the flow area is 6 half hexs plus
% the one around the pin in question
area_flow_gap = 3 * area_cooling;

% pin height (m)
pin_height = .381;

% This is a slice of the pin (m)
dy = pin_height / vertical_sections;

% Thermal conductivity of air (W/ m K)
k_air = 0.0257;

% Density (kg/m^3)
density_air = 1.205;

% specific heat capacity (J/kgK)
cp_air = 1.005 * 1000;

% thermal diffusivity (m^2/s)
alpha_air = k_air / (cp_air * density_air);

% Prandtl Number (Pr)
Pr_air = .713;

% Kinetic Viscosity (m^2/s)
kinetic_viscosity_air = 15.11e-6;

% Expansion Coefficient (1/K)
B_air = 3.43e-3;

% Gradient Prandtl (gPr)
gPr_air = (.75 * Pr_air)^.5 / (.609 + 1.221 * Pr_air^4.5 + 1.238 * Pr_air)^.25;

% Gravity (m/s^2)
gravity = 9.8066;

% Pin Area (m^2)
surface_area_pin = 2 * \pi * radius_pin * dy / 12;

% k_gas for air
k_gas_cvcp = 1.4;

% cv
cv_air = cp_air / k_gas_cvcp;
% Channel width (m)
width_channel = ((outer_hex + inner_hex/sqrt(3) - radius_pin) + 2 * (inner_hex - radius_pin)) / 2;

% dynamic viscosity of air (kg / m s)
dyn_vis_air = 1.846e-5;

% FIND THE CHANNEL TEMP
% Find characteristic velocity based on entire flow area
% Find the initial Rayleigh
Ra_0 = (gravity * B_air * density_air^2 * (T_s - Tinit) * (width_channel*12)^3 ...
/ (k_air^2 * dyn_vis_air);

RSL_0 = Ra_0 / (width_channel*12) / dy);

% initial Nusselt
Nu_0 = (576 / RSL_0^2 + 2.87 / RSL_0^0(1/2))^-(-1/2);

% initial h
h_0 = Nu_0 * k_air / dy;

% initial heat flux
q_0 = h_0 * surface_area_pin * (T_s - Tinit);

% initial modified Rayleigh
Ra_0_mod = (gravity * B_air * q_0 * density_air^2 * cp_air * (width_channel*12)^4) ...
/ (k_air^2 * dyn_vis_air);

% characteristic velocity (m/s)
velocity_char0 = (alpha_air / (width_channel*12)) * sqrt(Ra_0_mod * Pr_air);

% initial channel temperature
T_inf(1) = Tinit;

% iterate up the pin in a sectionalized region to minimize geometric considerations
for j = 2:vertical_sections + 1

% First find the Rayleigh and Nusselt numbers leading to heat transfer
% coefficient for this segment

% Find the Ra_s [Fenech]
Ra_s(j-1) = (gravity * B_air * density_air^2 * (T_s - T_inf(j-1)) * width_channel^3) ...
/ dyn_vis_air^2 * Pr_air;

% find a denominator value for readability
RSL(j-1) = Ra_s(j-1) .* (width_channel / dy);

% Nusselt Number
% Nu_s = (576 / RSL^2 + 2.87 / RSL^0(1/2))^-(-1/2)
Nu_s(j-1) = (576 / RSL(j-1)^2 + 2.87 / RSL(j-1)^0(1/2))^-(-1/2);

% heat transfer coefficient (W/m^2K)
h(j-1) = Nu_s(j-1) .* k_air / dy;

% sectional heat flux (W/m^2)
heat_flux(j-1) = h(j-1) * (T_s - T_inf(j-1)) * (W/m^2);

% Modified Rayleigh number
modified_Rayleigh_number(j-1) = (gravity * B_air * heat_flux(j-1) * density_air^2 * cp_air * width_channel^4) ...
/ (k_air^2 * dyn_vis_air);

% Velocity in this region (m/s)
velocity_char(j-1) = (alpha_air / width_channel) * sqrt(modified_Rayleigh_number(j-1) * Pr_air); (% m/s)

% Sectional delta T (C)
% Q_dot = m_dot * cp * dT
% m_dot = rho * A * v
% dT(j-1) = (heat_flux(j-1) * surface_area_pin) / (density_air * area_flow_gap * velocity_char(j-1) * cp_air);

% Uniform heat flux
% Nu_x = q_w/dT * x/k [Lienhard]
% dT = q_w/Nu_x * x/k;
% dT = Ts - Tinf => Tinf = Ts - q_w/Nu_x * x/k;

% Find the 'end of section' temperature (C)
T_inf(j) = T_inf(j-1) + dT(j-1);
end

% Output for the function
Tinf = T_inf(end);

% build output y vector (m)
l_pin = linspace(0,pin_height,length(T_inf));

% Back of envelope calculation
% time in area (s)
t_exposed = pin_height / velocity_char0;

% Energy change in the region (J)
dJ = heat_flux .* surface_area_pin * t_exposed;

% mass of air (kg)
m_air_BOE = density_air * area_cooling/4 * pin_height;

% specific energy (J/kg)
spec_dJ = dJ / m_air_BOE;

% Differential temperature from heat addition (C)
dT_BOE = spec_dJ / cv_air;

% final change
T_inf_BOE_dist = Tinit + dT_BOE;

% max channel value
T_inf_BOE = max(T_inf_BOE_dist);

% OUTPUT
display('Building output graphs');
figure(4)
plot(dT)
xlabel(' Pin axial (m)');
ylabel(' dT per region (C)');
title(' Change in temperature vs axial point ');
legend(sprintf(' Max temp(C) %3.2f ', max(T_inf)'), 'Location','SouthEast');
figure(5)
plot(l_pin,T_inf)
xlabel(' Pin axial (m)');
ylabel(' Channel Temperature (C)');
title(' Infinite channel temperature vs axial point ');
legend(sprintf(' Max temp calc(C) %3.2f ', max(T_inf)),sprintf(' Max temp BOE(C) %3.2f', T_inf_BOE), 'Location','SouthEast');