Reasons for Reflector Replacement

- After 40 years of operation, reflector began experiencing water in-leakage, culminating in a breach on 7/31/2009
- Water-saturated graphite and water-filled voids caused flux depression in beam ports and thermal column facilities
- Previous reflector design had solid graphite in front of beam port #2 significantly reducing the thermal neutron flux

Evidence of Reflector Breach at 1 MW

Old Reflector Design

- Original reflector had voids in graphite, which eventually filled up with water, precluding flux
- Beam Port #2 facility had no void in graphite, severely reducing the potential thermal flux in that facility
- New reflector fixes these problems by placing sealed aluminum cans within the graphite gaps in beam ports #1, #2 and #3

New Reflector Design

Timeline for Reflector Repair

- July 1st, 2013
 - Beginning of outage, waiting for fuel cooldown
 - Fabrication of transfer basket for bellows/steel tank parts removal
 - Mounted a temporary camera on reactor top to record significant events
- August 5th-8th, 2013
 - Began transfer of fuel from primary tank to adjacent bulk-shield tank (BST)
 - Removed all in-core fuel, graphite and irradiation facilities

Single Fuel Element Removal

August 12th - Lazy Susan Removal

Defueled Underwater Survey Results 5.6 R/hr 24 R/hr LS 48 R/hr LS lifting ring bolt/clamp bolt/clamp 12 R/hr nuts 0.25 R/hr sitting on bottom 60 R/hr center clamp 20 R/hr 10 R/hr center 50 R/hr nuts **Bellows** top grid plate 12 R/hr 80 R/hr bolt nuts 32 R/hr LS 2.3 R/hr bolt/clamp UICYON State 10 R/hr shim pins lifting ring

September 10th - Reflector Removal

September 12th - Survey Results After Tank Draining

October 1st - Tank Inspection

- Scaffold was installed in order to perform a complete tank inspection
- Ultrasonic thickness tests
 were successfully performed
 up to the lowest scaffold
 level (~10 ft. from bottom of
 tank), no degradation found
- Remote tank inspection was performed with HD cameras near the tank bottom due to high radiation levels

October 23rd - Epoxy Coating

November 1st - New Reflector Installed

Remaining Milestones

November 26th

- All major components reinstalled December 16th
- Achieved criticality on 67 FEs December 17th, 2013 to January 3rd, 2014
- Performed calibrations and flux measurements

January 6th, 2014 **Reactor Released For Normal Operation**

Final Doses for Entire Project

Group	DDE (mrem)	SDE (mrem)	Extremity (mrem)
Total - All	3,148	3,627	4,563
Total - Contractor	1,334	1,334	2,045
Total - OSU	1,814	2,293	2,518
Highest Individual - Contractor	683	683	773
Highest Individual – OSU	543	543	775

Change in Core Excess due to Reflector Replacement

Facility Flux Improvements

Facility	Spectrum	Flux With Original Reflector (n/ cm ² s)	Flux With New Reflector (n/ cm ² s)	Ratio of Increase
Neutron Radiography Facility (Beam Port #3)	Thermal	1.2 X 10 ⁵	4.5 X 10 ⁶	37.5
	Epithermal	1.6 X 10 ⁴	6.8 X 10 ⁴	4.3
Thermal Column	Thermal	8.0 X 10 ¹⁰	2.8 X 10 ¹¹	3.5
	Epithermal	6.4 X 10 ⁸	1.1 X 10 ⁹	1.7

Acknowledgments

- General Atomics Jerome Gormley
- Greenberry
- Leo Bobek Umass Lowell
- Melinda Krahenbuhl Reed College

