



# UUTR Modern Reactor Control Console Upgrade

Presented by Amanda Foley

By Amanda Foley, Glenn Sjoden, Meng-Jen "Vince" Wang, Andrew Allison, Edward "Ted" Goodell



### Overview

- Mark I TRIGA
- Introduction
- Old Console Removal
- TF Console Install
- Upgrades, HMI, ARMS
- Control Rod Rebuild
- Issues
- Lessons Learned
- Mission Complete Fully Operational





#### University of Utah's 100 kW Mark I TRIGA Reactor



Preliminary Electronic Dose data in Gray (Gy/s) @90kW: neutron: 1 Gy(Si)/s (1s=1%) photon: >30 Gy(Si)/s (f,g) & (n,g)

- U-Zr-H Fuel, <20% U-235
- Pneumatic rabbit system for irradiation of samples
- Central Irradiator
- Thermal Irradiator
- Fast neutron irradiator
- Several additional radiation ports available
- CI Mean Flux (n/cm<sup>2</sup>/s) at 90 kW
  - < 0.625 eV: 1.35x10<sup>12</sup>
  - 0.625 eV to ~1 MeV: 2.06x10<sup>12</sup>
  - > 1 MeV: 7.56x10<sup>12</sup>



#### Introduction

#### MARK III Console

#### **ThermoFisher Console**





### Mark III Console Removal



- Labeled and unplugged all support equipment from console
- Expected to be a simple "pick it up and move it process"
  - Door frames where too small to move console through in one piece
  - Console table section was removed to fit through the doors
- Sent to recycle



# 2020 Console Equipment Upgrades



#### **Digital Chart Recorder**

• Better Data Logging

#### Scram Logic & Magnet Power

 Digital convenience without changing safety systems





Auto Reg Rod Control
Off the shelf replacement parts



# 2020 Console Equipment Upgrades



#### Console PLC

#### ARMs PLC



- Easy integration of new support equipment with Groove Epic PLC – reprogrammable and expandable
- Ability to redesign HMI and connect additional sensor hardware if desired

# Human Machine Interface



# Human Machine Interface



# ARMs Teleview 3000 Display

| Login |                     |                    |       |                     |       | ARM 2               | Total Dose:  | 177.3 mr γ   | ] |
|-------|---------------------|--------------------|-------|---------------------|-------|---------------------|--------------|--------------|---|
|       |                     |                    |       |                     |       | Device Cnt:         | 4 High Rate: | 0.025 mr/h γ | / |
| Views | s 🥖 Config 🖌        | About              |       |                     |       | Alarm Cnt:          | 0High Alarm: |              | ] |
|       | DRM                 | DRM                |       | DRM-2EN             |       | DRM-2               |              |              |   |
| Stack |                     | Ceiling            | Tank  |                     | PI    |                     |              |              |   |
| Rate: | <b>0.025</b> mr/h γ | Rate: 0.019 mr/h γ | Rate: | <b>0.016</b> mr/h γ | Rate: | <b>0.017</b> mr/h γ |              |              |   |

Ability to display ARMs readings outside of control room

## **Console Replacements/Upgrades**

- SCRAM relay logic (still completely analog)
- Controller for control rods, magnet power, and interlocks
- Digital chart recorder
- Digital displays
- Ultra-sonic water sensor
- pH sensor

- Water float level alarms
- Damper wiring
- High radiation bell
- Air pressure gauges
- Conductivity sensors
- Water flow rate sensors
- Console lights are LED

THE UNIVERSITY OF UTAH

### **Control Rod Drives**

- Wiring diagrams did not match in service wiring.
- Attempting to integrate the Regulating Rod into the ThermoFisher console resulted in damage to the Auto Rod Control Board due to wiring fault.

| onsole Terminal<br>Block                                                                            | Signal                       | Rod Drive<br>Connection |  |
|-----------------------------------------------------------------------------------------------------|------------------------------|-------------------------|--|
| TB32x-1                                                                                             | Input Power 120VAC - Line    | J901-1                  |  |
| TB32x-2                                                                                             | Input Power 120VAC - Neutral | J901-7                  |  |
| TB32x-3 Input Power 120VAC - Earth Ground                                                           |                              | J901-Case               |  |
| TB32x-4                                                                                             | Drive Up - Line              | J901-10                 |  |
| TB32x-5 Drive Down - Line                                                                           |                              | J901-16                 |  |
| TB32x-6                                                                                             | Mag Up Limit Switch          | J901-6                  |  |
| TB32x-7                                                                                             | Mag Down Limit Switch        | J901-13                 |  |
| TB32x-8                                                                                             | Rod Down Limit Switch        | J901-15                 |  |
| TB32x-10                                                                                            | Magnet Power +               | J901-4                  |  |
| TB32x-11                                                                                            | Magnet Power -               | J901-5                  |  |
| TB32x-13 Rod Position +V                                                                            |                              | J901-3                  |  |
| TB32x-14 Rod Position Wiper                                                                         |                              | /                       |  |
| TB32x-15 Rod Position Common<br>Where x is: 1 for Safety Rod Drive, 2 for Shim Rod Drive, and 3 for |                              | .1901.10                |  |



### **Control Rod Drives**

- High voltage and low voltage were together on the same Amphenol connection
- Wire tracing was nearly impossible due to undocumented rewire

e.g... ten-turn potentiometer
 wiper wire was either moved or
 completely removed



THE UNIVERSITY OF UTAH

### **Control Rod Drive Rebuild**



#### Replaced

- Draw tube sleeve bearings
- Pinion shaft outrigger bearing
- Resistors, Switches, Connectors
- Bodine motors in shim & safety rods
- A flexible guide and wire system

**Steve Smith** from **OSU** rebuilt all 3 control rod drives Nov/Dec 2020 and help install them Jan 2021; **Dave Leestma** from **WSU** also traveled to U. Utah and assisted in the re-wire/installation in Jan 2021– <u>We are grateful for the dedicated assistance</u> <u>from OSU and WSU personnel for their valuable help!</u>

### Area Radiation Monitor Update

- Replaced old ARMs with Mirion DRM-1/2/2E
- Integrated into the new console using Teleview 3000 and a Direct Logic 205 PLC for alarm state



### Area Radiation Monitor Issues

- Teleview and the Direct Logic 205 PLC would not always communicate the signal that switches the alarm relay state
- High rad alarm from detectors added to alarm loop for robustness



### ThermoFisher Console Install

#### The Plan

- 2 weeks with ThermoFisher installation specialists
  - -Includes training on new console
- Support equipment installed by facility staff



# Console Install Timeline

- 1 month to defuel the reactor, and then disassemble/remove the old console
- 2 weeks with Thermo Fisher techs
- 2 months for all three UUTR control rod drives to be rebuilt
- An additional 3.5 months of troubleshooting, software modification, and calibration of sensors and monitoring systems, as well as completion of 10 CFR 50.59 documentation and approvals
- Control rod and thermal power calibrations performed through June and July of 2021
- The project timeline from disassembly of the old console to success with the first criticality in 2021 required a total of 8 months

# **Console Installation Challenges**

- Control Rods improperly wired and needed to be rebuilt
- Auto Control Board damaged during install
- Connecting University security system to appropriate alarms
- Wiring the damper
- Incorrect understanding of legacy systems that still needed to be integrated into the new system
  - CAM Lin interpolation was programed into human machine interface but needed log interpolation
- ThermoFisher wiring changeup in console—required correction



## Lessons Learned

- 5 SCRAM indications is burdensome
  - Scram logic drawer
  - Power monitoring drawers
  - Console panel
  - HMI x2
- Make sure the drawers and the HMI are labeled the same
- Updated SOPs needs to be consistent with HMI and Drawer terminology

THE UNIVERSITY OF UTAH

## Lessons Learned



- When integrating legacy systems, "quadruple check" the wiring!
- Label everything
  - Know who the subcontractors are PLC/HMI programmer—and obtain logic unit logins/passwords before human memories fade
- Make sure information is well documented and passed down through personnel changes.
- Purchase a fast computer for HMI so it updates faster than every 2 seconds when an input is made e.g. raising control rods!
   ...(cheaper is not always better!)
- Test equipment as soon as they arrive so that they can be replaced under warranty.

### Thank You to Everyone Involved

- Amanda Foley
- Steven Pappas
- Matthew Lund
- Glenn Sjoden
- Meng-Jen (Vince)
   Wang
- Codey Olson

- Ted Goodell
- Logan Forster
- Steve Smith (OSU)
- Dave Leestma (WSU)
- Dan Miller (TF)
- John King (TF)

Amanda.Foley@utah.edu



### Extra Slides



1975 – Reactor went critical for the first time.

1995 – Mark III Console installed from UC Davis.

2010 – Ordered two uncompensated ionchambers and one compensated ion-chamber with a \$249,000 DOE Reactor Infrastructure grant.



#### 2015/2016

- Equipment failure caused a shutdown for almost one year due to failed fission chamber.
- Installed two new uncompensated ion chamber and temporary fission chamber.
  - Fission chamber cabling no longer compatible with console; therefore temporary NIMs rack used to monitor source counts.



#### 2015/2016

- Cleaned up reactor console wiring that was originally installed –needed overhaul due to noise/leakage currents.
- Received DOE Reactor Infrastructure grant for \$433,563 to replace the neutron flux monitoring channels.

2018 – Received DOE Reactor Infrastructure grant for \$995,600 to replace reactor Control.

2018 – Received RIF grant for core facilities from Utah VP for Research -- \$34,940 for Lynx multichannel analyzer, software updates, and radiation monitoring equipment.

2019 – Installed new compensated ion-chamber, new fission chamber, and new neutron power monitoring channels (power monitor drawers). THE UNIVERSITY OF UTAH

# Timeline

Oct 2020 –Began install of new ThermoFisher console and replacement of air pressure gauges, ultra-sonic water sensor, water float sensor, pH meter, conductivity sensors, flow meters, area radiation monitors (ARMs), rewire damper and PI.

June 2021 – ThermoFisher console install completed.

# TR-40 Wide Range Linear Monitor



THE UNIVERSITY OF UTAH

# TR-20 Log and Linear



# **TR-10 Neutron Flux Monitor**





### Personnel Changes

**Reactor Supervisor** 

Director

Andrew Allison (2021 – Present) Amanda Foley (2021 – Present) Dr. Glenn Sjoden (2020 – Present)

Steven Pappas (2021 – 2021) Matt Lund (2017 – 2020) Ryan Schow (2014 – 2017)

Matt Lund (2017 – 2020) Interim Ryan Schow (2016 – 2017) Interim Dr. Tatjana Jevremovic (2009 – 2016) THE UNIVERSITY OF UTAH

#### **CAM Blower Replacement**

New

Old Blower





- CAM Blower was leaking / not serviceable
- The CAM blower Universal RAI blower model 22U-RAI was replaced with a Howder Roots blower model 22U-RAI.