(Almost) Quantifying the Efficiency of TRIGA Mark I Power Channels

Hope Palmer Reactor Operator | Reed Research Reactor 20 Oct 2021

Summary

- \star Introduction to our power channels
- \star The experiment and goal
- ★ Method and plan
- ★ Results?
- \star Interruptions for Maintenance
- ★ What's next?

Reed Research Reactor's Power Channels

Power Channels

The Reed Research Reactor (RRR) has 3 power measuring channels

Neutron detectors \rightarrow Power readout in watts

- Fission chamber \rightarrow Logarithmic channel
 - Operates in pulse mode from 1E-8 32% of full power*
 - Switches to Campbelling mode at higher powers
 - Digital readout
- Uncompensated ion chamber \rightarrow Linear channel
 - Multi-range readout, with percent of selected range displayed
 - Analog readout
- Compensated ion chamber \rightarrow Percent channel
 - Simple percent of full power* displayed
 - Analog readout

Possible Range of Channel Readout

Power Channels

*full power is 250kW per the RRR's license

The Experiment and Goal

Big question: Within the three channels overlapping range, do their readouts deviate from each other or the 'true' power?

- Areas of particular interest:
 - Does the accuracy of the log channel change around the 30% mark?
 - Does the percent channel become less accurate at lower powers?
 - If the channels deviate from each other, how much and at what power levels?

Hypothesis: They may end up deviating from the 'true' power at lower levels, but will remain within 2% of the true power at higher levels (> 125kW). They should not deviate from each other.

• We calibrate our power measuring channels at 80% of full power once a year.

Common misconception: range of channels vs efficiency of channels

- Often heard that some power channels are "better than others" at different power levels.
 - Actually referring to range of channels, thus when they can feasibly be used.
 - Led some trainees/staff (including myself) to think one channel was more efficient than another.
- Researched to find which neutron detector (fission chamber, UC/C ion chamber) is 'better' at varying degrees of neutron flux.
 - \circ Unable to find direct tests \rightarrow motivated this experiment!

The Method and Plan

Measure a control power (will be used as 'true' power)

- Used a revised nuclear instrumentation calibration procedure:
 - Operate at a constant power
 - Thermocouples through pool measure change in temperature over an operation
 - By relating change of bulk water temperature to heat input of reactor, power can be found
- Gives 'true' (or thermal-calculated) power for comparison
- Did not follow the rest of procedure (calibration portion)

REED	Date									
COLLEGE	Time 1			Constants Used in Calculations						
	Time is power is reached	ed hh:mm		Core Volume 499220.1016 cm^3			are constant, and the			
	Ch 0	°C		Area of the tank	119380.41	cm^2		name	es and units of input	
	Ch 1	°C		ΔHv	2458	Joules/gram		par	ameters. DO NOT	
	Ch 2	°C		Ср	4.186	Joules/(gram °C)		ED.	IT THESE CELLS.	
	Ch 3	°C								
	Ch 4	t °C		Calculating Qin			Yellow cells require user input (follow SOP 33)			
	Ch 5	°C		Specific volume at Avg Temp 1	#ERROR!	cm^3/g		шр	at (10110W SOI 55)	
	Console	°C		Specific volume at Avg Temp 2	#ERROR!	cm^3/g		DI		
	Average Temp	#DIV/0! °C		Mass at Time 1	#ERROR!	g		Blue	bers. Once all of the	
				Mass at Time 2	#ERROR!	g		yello	w cells are filled, the	
	Pool Height	mm		Mass of Evaporation	#ERROR!	g		blu	e cells will display	
				Qin	#ERROR!	Joules		numt	THESE CELLS	
	Time 2								THESE CEEES.	
	Time at end of operation	hh:mm		Wait? What's actually be	eing calculated?			Th	e green cell is the	
	Ch 0	°C		$O = -m_{T} \cdot C + \Delta T + m$	$n_{\pi}(\Lambda H)$	$+C \cdot \Delta T$		DO	NOT EDIT THIS	
	Ch 1	°C		$z_{in} = m_1 \circ c_p \cdot \Delta I + m$		$(\bigcirc_p ~ \Delta_1)$			CELL.	
	Ch 2	°C		Qin = the heat input of	of the reactor					
	Ch 3	°C		mT= the water mass	s in the tank					
	Ch 4	°C		Cp = the specific hea	t of the water					
	Ch 5	°C		$\Delta T =$ the change in bulk v	vater temperatur	e,				
	Console	°C		mE = the mass of the wate	er that evaporate	ed				
	Average Temp	#DIV/0! °C		$\Delta Hv =$ the latent heat of	of vaporization					
	Pool Height	mm								
		1.777	Percent Error					_		
	Linear	kW	#ERROR! %	#ERROR!		Calculated	Power			
	Percent	kW	#ERROR! %	#ERROR!		Time at power	0.00	S		
	Log: Wide Range	kW	#ERROR! %	#ERROR!		Power	#ERROR!	ĸW		
	Log: Power Range	kW	#ERROR! %	#ERROR!						

Method and Plan

Next step: go critical at different powers, stay at each for three hours

- Record linear, percent, and log channel readouts at the end of the three hours for comparison
- Keep powers > 2% of full power* for accurate percent channel recording

Linear Channel Range	% of Range	Power	% of FULL Power
250 kW	80%	200 kW	80%
250 kW	60%	150 kW	60%
250 kW	40%	100 kW	40%
250 kW	20%	50 kW	20%
25 kW	80%	20 kW	8%
25 kW	60%	15 kW	6%
25 kW	40%	10 kW	4%
25 kW	20%	5 kW	2%

*full power is 250kW per the RRR's license

Original plan for operating:

(Limiting factor: operations must be three days apart)

Results?

- No conclusitory data due to maintenance interrupting most operations.
- What was gotten:

Target Power (kW)	True Power (kW)	Linear Channel (kW)	% error	Percent Channel (kW)	% error	Log Channel (kW)	% error
200	202.08	200.0	-1.04	205.0	1.43	203.8	0.82
150	163.12	150.0	-8.74	148.8	-9.62	148.8	-9.62

If accurate, this disproves the first part of my hypothesis.

What maintenance took place?

Maintenance

Water Pump Failure

- Primary cooling system pump was louder then normal and pressures were reading low.
- Facilities services concluded that the pumps impeller was degraded.
- A new impeller was installed and primary is now operational.

Primary pump's degraded impeller

Ventilation Fan Failure

- Indicators showed there was no airflow into reactor bay.
- Staff concluded that the ventilation fan into the bay was off; all other fans were operating as expected.
- A campus-wide software issue caused the fan to turn off.
- The issue has been resolved, but we're monitoring it to ensure it doesn't happen again.

Maintenance

Revised plan for operating:

Maintenance

Next Steps

Next Steps

What's next?

Over the course of the next year I aspire to ...

Next Steps

Hope Palmer hoperpalmer@reed.edu (931) 241-2678

Thank you!

