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Introduction

* MCNP work at NIST for past 2 summers,
Pl: Dagistan Sahin, the next presenter :)

* Senior Reactor Operator
* Finished BA Physics ‘21, Reed College in 3 yrs

e Currently BS Applied Physics ‘23 for 2 yrs
at Columbia University through
Reed-Columbia Combined Plan Program
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Roadmap

* Features of Reed MCNP model

* Reed Automated Neutronics Engine

* Lessons Learned from

* Modeling

* Results analysis
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A 4th-yr SRO removes
a fuel element from
the core for
inspection

A 2nd-yr RO guides a
1st-yr Trainee through a
startup checklist.
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What is MCNP?

* Monte Carlo N-Particle code encodes the 3D parametric equations that inscribe the core
geometry and materials, then runs various nuclear calculations
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What is MCNP? What is a Neutronics Analysis?

Monte Carlo N-Particle code encodes the 3D parametric equations that inscribe the core
geometry and materials, then runs various nuclear calculations

A standard series of nuclear calculations to predict performance and behaviors of a reactor

Regularly completed as part of SAR, 50.59 screen, re-licensing

TRIGA neutronics are well-known, but still necessary and good for student practice
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Motivations

MCNP 5 analysis of old Al-core in 2010 by Oregon State (OSTR) undergraduate for 2011 refueling
Violation for not doing neutronics analysis/CFR 50.59 screen for the post-refueled SS-core
Analysis for new SS-core completed in 2011-12

No raw data remaining from new analysis
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Reed MCNP Model Features

High fidelity core geometry
* Exact core components
e Sample tubes in irradiation facilities
* Core neutron detectors

Burnup for individual fuel elements
ENDF 8 data libraries
Cold but NOT clean core

Rabbit tube

Outer vial

Inner vial

Rabbit system in

R » *D COLLEGE core pqosition F9

0
y (cm)




Reed Automated Neutronics Engine (RANE)

Automates MCNP input file writing for specific tests

Uses Jinja2 package to have Python “fill in the blanks” of a MCNP template file

c --- 4111 - SS clad (T0S210D21@) universe ---

C
41111 185 -7.85 312300 -312301 -311362
411102 102 {{h2o0 density}} 312300 -312301

Ex: material densities

c pz surfaces

Ex: rod heights
& {{62.8153+0.38*safe height}} $ top of control rod

{{62.0533+0.38*%safe height}} $ top of main section

mle2 {{ h mats }}

Ex: water material card (temperature-dependent) {{ o_mat_lib }} 1.0000

C

mt102 {{ h2o mt 1lib }}
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Automated Plotting

What RANE does:

Xming plot commands
Export to PS file

Convert to TIFF using
GhostScript

Convert to PNGs using PIL
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Lessons Learned from Modeling and Analysis
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Model: Boron Carbide Poison

borated
graphife

 Raising/lowering control rods is primary
method of controlling reactor power

graphite

control
plug

* More power that the control rod “sees”

rod
. graphite
- more burnup of rod poison
. . control A1 fuel rod
* Problems with 2010 analysis: “
depleted
e Circa 2010, OSTR had 1260 MW-days vs. Reed fuel 1od | graphite
had 64 MW-days of power
’ Assume.s identical burnup to OSTR’ Severely (a) fresh control rod (b) 1-segment depleted (c) 4-segmented depleted
overestimates Reed rod burnup control rod control rod
* Models “burnt up” boron as stainless steel, Rod burnup is modeled in MCNP by reducing decreasing
not carbon boron densities and radii

Figure from 2013 GSTR Neutronics Analysis, N. Shugart
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Model: Boron Carbide Poison

Table 5. Comparison of non-transient control rod poison (B,C) properties between TRIGA
analyses. Chemically pure B4C has density 2.52 g/cc.

B4C Properties
Facility/Analysis | Mass density (g/cc) Radius (cm) Notes
RRR nominal 1.81220 1.53 As reported in RRR 2010 analysis
RRR 2010 report 1.72066 1.30 Based on OSTR; discrepancy in report vs. code
RRR 2010 code 1.68590 1.30 Burned-up B4C accidentally uses SS not graphite
RRR 2021 1.80772 1.52 3.8% of OSTR value, scaled to RRR:OSTR burnup
UUTR 2.52 1.00, 0.20 Safe and shim are thicker than reg
MUTR 2.51 1.52
UClI 2.30 -
GSTR 1.72066 0.68872-1.69544 | Step-like burnup, min-max radii
OSTR 1.72066 1.30 Experimentally determined for 2007 SAR
Chemically pure 2.52 --

Lesson Learned: Make sure assumptions are scaled properly to your specific facility!
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shutdown

MCNP model state I

Model: Samarium Poison ‘ Equn-@{

-

 Sm-149 is a neutron poison naturally

. 2 weeks 2 weeks 2 weeks |

produced from fission : |

* Does not completely disappear from core 0

- must consider in MCNP model 2| |
time

Sm-149 history over time and power

REED COLLEGE 13




Model: Samarium Poison

Table 7. Calculated average equilibrium Sm-149 poison values in Core 49
at 250 kW and post-250 kW shutdown.

Properties Value
Thermal neutron absorption cross section 41,500 b
| -s0.83 ) absorption .
I MCNP model state I Averages at equilibrium during 250 kW operation
I -$0.79 I Time to reach 14.3 days

Concentration 3.458 E+16 at/cm?
Atoms in core 1.059 E+21 at
Mass in core 2.579E-01¢g
Total reactivity worth in core —$0.79

Averages at equilibrium after shutdown from 250 kW (modeled in MCNP)
Time to reach ~14 days
Concentration 3.644 E+16 at/cm?
Atoms in core 1.116 E+21 at
Mass in core 2.762E-01g

|
|
|
|
|
|
: Total reactivity worth in core —-$0.83
|
|
|
|
|
|
|
|

power

Problem: Not sure if Reed actually reached operational equilibrium

time

. REED COLLEGE ¥




Model: Xenon Poison

e Xe-135 also poison from fission

* Eventually decays away in core =
NOT considered in MCNP model

e But fun and good for ops training to know
Xe-135 effects

REED COLLEGE

I MCNP model state I

I Equil. @ op

power

»172-80 h
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Model: Xenon Poison

I MCNP model state I

Table 6. Calculated average equilibrium Xe-135 poison values in Core 49
at 250 kW and shutdown.

Properties Value
Thermal neutron absorption cross section 26E+6b
Averaees af eguilibrium during 250 kW operation
: : : : Time to reach 56 hrs
[ [ [ [ Concentration 1.241 E+15 at/cm?®
y : : : Atoms in core 3.802 E+15 at
! ! ! Mass in core 8L24F 03¢
: 48-50 h : : : Max reactivity worth in core —$1.86
[ [ [ [ Averages at equilibrium during 5 W operation
: : : : Time to reach 56 hrs
| | | | Concentration 3.941 E+10 at/cm®
' ' ' ' Atoms in core 1.208 E+15 at
E : : : : Mass in core 2.708E-07 g
(% : : : : Max reactivity worth in core —$6.02 E-05
e —— 8-10 h
: » 18-24 h
; ; 72-80 h
time
Lesson Learned: Magnitude of equilibrium Xe > equilibrium Sm
O]
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Results: Moderator Temp. Coef.

* Measures reactivity change per temperature change in moderator

In MCNP code: need to change density + cell, cross-section, thermal scattering library temps

For cross-section (XS) temperature interpolation: “MCNP pseudo-material interpolation”

For thermal scattering (S(a,B), “S alpha beta”): discrete without makxsf code

ENDF/B-VIII.O Library Code Temp [K] Temp [°C]
h-h20.40t 294 21
h-h20.42t 300 27
h-h20.43t 324 51
h-h20.44t 350 77
h-h20.45t 374 101
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Results: Moderator Temp. Coef.

Moderator Temp. Coef. [S/K]
Facility/Analysis value t1lo Notes
RRR 2010 -0.0057 --
RRR 2021 +0.0132 0.0015 Uses interpolated xs libraries
UUTR -0.0133 — Only measured at 293, 600 K (20, 327 C)
MUTR 0.0000 - Determined negligible and bounded around 0
ucl -0.0085 - Averaged from 20 to 700 C
GSTR +0.0120 0.0020 Uses interpolated xs, S(a, B) libraries
OSTR -0.0072 —
WSUR — — Not calculated
Figure from 2013 GSTR Neutronics Analysis, N. Shugart
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Results: Moderator Temp. Coef.

My calculations yield “jagged” upward step

Continuous density + cell (TMP), cross-section (xs) temperature values have negative effect
Discrete thermal scattering S(a,B) temperature has positive effect

Next step: use maxksf for continuous S(a,B) to produce smooth upward line

Lesson Learned: Make sure to use multiple S(a,B) libraries along domain to show full effects

Figure from 2013 GSTR Neutronics Analysis, N. Shugart
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Summary

* Automated scripts for easy replication

* Maintain good documentation of reasoning for assumptions

* Make sure to scale assumptions properly when borrowing from other facilities
* Xenon > Samarium reactivity

* Most Sm produced during operation, not shutdown

* Perturb ALL parameters related to a variable, lest you miss an effect like from S(a,B)

REED COLLEGE
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Questions?

R
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