A REACTOR-BASED INTENSE POSITRON SOURCE (IPS)

VAN HERD, M. S. Engr., Ph. D. AMARILLO COLLEGE TRTR WORKSHOP 30-SEPT-2024

MOTIVATION 1. POSITRONS NEEDED

- 2. EXOTIC MATTER RESEARCH
- 3. PROPULSION
- 4. MATERIALS SCIENCE (PALS)
- 5. BIOMEDICAL A. THERANOSTIC APPLICATIONS B. MICRO-ORGANISMS

6. DECREASING β + RESEARCH

1. IN-PILE POSITRON SOURCE: EM

The positron beam is magnetically guided to the confinement system in a solenoid field of 5-7mT, as well as compensation fields.

Kyoto Model after Xu, et al. 2013

2. IN-PILE POSITRON SOURCE: TIPS

Note that the beam traverses collimators and a vacuum jacket. Moreover, gamma radiation is further attenuated by absorption into an Al beam catcher where it is captured by a Cu transport system. (Image from Köymen et al., 1999.)

2. IN-PILE POSITRON SOURCE: TIPS MECHANICAL TRANSPORT

Doron, 2004

INITIAL BENCHMARK EXPERIMENTAL SETUP

1. Experimental verification run using rx PGAA system

2. Flux assumed to be 1E7 n/cm²/sec (see Table 1)

3. HPGe detector used to measure 511keV annihilation peak

Power (watts)	Total flux (_o n ^l /cm ² /sec)	TABLE I	Thermal flux (_O n ^l /cm ² /sec)
0.1	7.13 x 10^{6}		$(5.81 \pm .12) \times 10^6$
0.1	7.29×10^{6}		$(5.95 \pm .12) \times 10^6$
	6.73×10^{7}	· · ·	$(5.48 \pm .11) \times 10^7$
1	7.02×10^{7}		$(5.72 \pm .11) \times 10^7$
10	6.44×10^8	· ·	$(5.25 \pm .10) \times 10^8$
10	6.41×10^8		$(5.22 \pm .10) \times 10^8$
100	6.45×10^9		$(5.26 \pm .10) \times 10^9$
100	6.50×10^9		$(5.30 \pm .11) \times 10^9$
750	4.61 x 10^{10}		$(3.75 \pm .08) \times 10^{10}$
750	4.70×10^{10}		$(3.83 \pm .08) \times 10^{10}$

Perry (1963): https://hdl.handle.net/10945/11541

β+ Source Experimental Setup

			Thickness	Diameter	
Element	Purity [%]	Weight [g]	[in]	[in]	Density [g/cc]
Cd	99.97	2.23662	0.02	0.5	8.65
W	99.9608	0.3189	0.005	<0.5	19.3

Two variations were run:

- 1. Cd half cap alone (a)
- 2. Cd half cap over W foil (b)

	Gamma Ray		Activity		Area		Efficiency
Nuclide	Energy	Activity	Uncertainty	Net Area	Uncertainty	Efficiency	Uncertainty
Pb-210	46.5	5.796E+02	1.9477E-02	6.51E+03	182.92	6.498E-05	1.827E-06
Am-241	59.5	3.988E+02	1.7454E-02	1.56E+04	237.54	2.269E-04	3.447E-06
Cd-109	88	2.355E+02	9.5781E-03	2.80E+04	201.6	6.879E-04	4.953E-06
Co-57	122.1	6.866E+01	4.4498E-03	7.89E+03	1.59E+02	6.648E-04	1.343E-05
Ce-139	165.9	2.183E+01	9.5409E-04	2.39E+03	144.29	6.326E-04	3.826E-05
Hg-203	279.2	1.281E-01	2.5711E-06	0.00E+00	0	0.000E+00	0.000E+00
Sn-113	391.7	1.681E+01	5.2896E-04	1.61E+03	109.34	5.531E-04	3.764E-05
Cs-137	661.7	3.933E+02	1.9258E-02	2.76E+04	1.82E+02	4.064E-04	2.682E-06
Y-88	898	3.034E+01	3.9674E-04	1.88E+03	91.22	3.585E-04	1.740E-05
Co-60	1173.2	6.047E+02	1.6120E-02	3.19E+04	194.99	3.049E-04	1.866E-06
Co-60	1332.5	6.048E+02	1.6120E-02	3.02E+04	184.43	2.887E-04	1.765E-06
Y-88	1836.1	3.211E+01	4.0691E-04	1.23E+03	46.51	2.215E-04	8.383E-06

 $\varepsilon = e^{0.078 \ln(511)^5 - 2.383 \ln(511)^4 + 28.92 \ln(511)^3 - 174.2 \ln(511)^2 + 520.4 \ln(511)}$

= 4.7399E - 4

Experimental Results

		Live Time	Positrons/se	
	Material	[s]	С	
$ \varepsilon $	Cd	300	1.90E+05	
t_L		600	1.89E+05	
		Mean	1.89E+05	
	Cd-W	300	1.80E+05	
		600	1.79E+05	
	Cd-W	300 600	1.80E+05 1.79E+05	

MCNP Model for Experiment

POSITRON CONTINUOUS WAVE BEAM DUMP: SCHEMATIC

POSITRON CONTINUOUS WAVE BEAM DUMP: SHIELDING

SIMULATION: BEAM DUMP

3-D

POSITRON

strike rate = 58 / 2.79 sec E = 512 KeV t = 1.89 sec error = 1.6×10^{-2} V v = 18.791 mm/ µsec

DATA – BEAM LINE

3-D

POSITRON

strike rate = 25 / 1.89 sec E = 512 KeV t = 1.89 sec error = 0v = 19.701 mm/ µsec

AGN BEAM PORT: ELEVATION

AGN BEAM PORT: REDUCER

A = 105 mm B = 12 mm C = 63 mm

https://www.ajvs.com/product_info.php?products_id=7790

BEAM LINE

L = 1 m

BEAM LINE: SECONDARY

POSITRON TRANSPORT THEORY BACKGROUND

- - B. Low

- 1. Little is known about positronic transport in air under adiabatic conditions.
- 2. Positrons previously have not been transported using an air core beam guide.
- 3. What is the activity (A) at the reaction chamber into which the fomites will be introduced?

A. Marker: Eesa catalyzed a reaction between NO and O to form the paramagnetic NO₂.¹ This reaction produces a brown-colored gas, thus rendering the boundary front in the reaction chamber visible. It also provides visual verification of the calculated values for the Froude, Stokes, Reynolds, and other scalar quantities by observing these regimes in the clear tube demarcated by the brown vapor. In this case, however, it is proposed to employ iodine (MW 254 g/mol at AW 127) that evaporates under adiabatic conditions. Moreover, iodine exhibits diamagnetic properties that will simulate the behavior of the positively charged positrons

within the air coil solenoid beam guide.² The diffusivity of iodine through air is 1.13×10^{-5} m²/s and its saturation vapor pressure is 2.6 kPa. The iodine solid(s) are emplaced in a three-neck flask, into which a variable, incurrent air flow comes into the vessel, carrying the resultant vapor with it (Figure 2).³ The middle neck of the flask carries a thermometer to verify the temperature of the reaction, T_{min} = 298K. The third neck functions as the air and vapor discharge, to which the excurrent air will be piped into the source chamber. This flask has the added functionality of being placed in a water bath to control T_{min} thus ensuring the maintenance of the adiabatic conditions under which the adiabatic into other temperature and pressure regimes, this component will accommodate many of those specifications, including boiling (Figure 3).⁴

Source and Source Chamber

This verification experiment would carry the I_2 vapor from the vapor chamber into the source chamber containing ²²Na. It and its transport fluid (air) would there pick up the positrons emitted by the ²²Na and would transport the positrons, positronic swarms, and Ps complexes thence into the beam guide where they would then be guided toward the fomite reaction chamber. It should be understood that ²²Na is here adopted for reasons of financial and experimental economy and that there is a radioisotope of iodine (124I) that could be used directly that is a strong positron (β +) emitter that could visualize and verify the experimental aims of this project as well, $t_{1/2} = 4.18$ d

Laminar (Re < 3000) Flow of I-Ps Vapor through PVC Beam Guide

 β + energy deposition in water through "spur" formation

The "Spurs" collocate into a string.

BEAM LINE: SECONDARY (DC)

$V_{olto go}(V)$	Current	Air Velocity	Air Flow rate
voltage (v)	(Amp.)	(m/sec)	(m3/sec)
3.00	0.90	0.20	0.0015
4.50	0.90	1.10	0.0083
6.00	1.25	1.60	0.0120
7.50	1.25	2.00	0.0150
9.00	1.28	2.20	0.0165
12.00	1.28	2.40	0.0180

DESTINATION: VIRUCIDE

FORMATION OF TERMINAL BLOB T = 1100 ns

Eric Compher, NNL Will Gurecky, ORNL Kris Hyatt, LANL **Christine Johnson, PNNL Cheryl Pfeiffer, NNSS Carl Willis, UNM and Sandia** Prof. Steve Biegalski, Georgia Tech **Prof. Paul Forster, UNLV Prof. Adam Hecht, UNM** Prof. Asanga Ranasinghe, Amarillo College **Prof. Chris Rylander, UT-Austin**

575-578-1860

APPENDIX

Na-22 Gamma Spectrum

Bin = 326 Energy/(keV) = 524.771 Frequency = 1672 RelativeFreq/(%) = 1.344 ROI: Mean/(keV) = 521.568 SD/(keV) = 24.209 Gross = 63885 Net = 59475

489.912

571.25

652.588

733.927

815.265

896.603

977.941

1059.28

1140.618 1221.956

511 keV annihilation gamma.

1.882

83.22

عادياتها ويوابله فأثلته وروالتو

164.558

245.897

327.235

408.573

Positron Moderation

MCNP e Tracks

electron creation	tracks	weight	energy	electron loss	tracks	weight	energy
		(per source	e particle)			(per source	particle)
source	0	0.	0.	escape	207818	8.0659E-02	7.0857E-01
nucl. interaction	0	0.	0.	energy <u>cutoff</u>	11867990	4.6072E+00	4.3346E-03
particle decay	0	0.	0.	time <u>cutoff</u>	0	0.	0.
weight window	0	0.	0.	weight window	0	0.	0.
cell importance	0	0.	0.	cell importance	0	0.	0.
weight <u>cutoff</u>	0	0.	0.	weight <u>cutoff</u>	0	0.	0.
e or t importance	0	0.	0.	e or t importance	0	0.	0.
pair production	589044	2.2863E-01	1.3437E+05	scattering	0	0.	8.1210E-02
compton recoil	43757	1.6990E-02	1.0446E-01	bremsstrahlung	0	0.	4.7625E-02
photo-electric	360663	5.7423E-02	3.0075E-03	p-annihilation	4024	1.5637E-03	5.6214E-09
photon auger	3562	1.3833E-03	2.6544E-05	atomic excitation	0	0.	0.
electron auger	7490	2.9094E-03	5.5829E-05				
knock-on	11713539	4.5473E+00	2.9267E-02	electroionization	0	0.	0.
(gamma, xelectron)	0	0.	0.				
total	12718055	4.8546E+00	1.3437E+05	total	12079832	4.6895E+00	8.4174E-01

MCNP Results

f1 current tally with an elc card used to determine source strength Flux obtained by using an f2 neutron tally and scaling with a known reactor flux

	p-annihilation [per source particle]	e⁺/cm²/sec		
		MCNP	Experimental	
Cd	8.02E-03	8.02E+04	1.89E+05	
Cd-W	2.67E-03	2.67E+04	1.80E+05	

Cd-only and Cd-W designs compared

	Cd	
Source Strength	5.40E+07	e+/sec
	8.90E+07	e ⁻ /sec
Positrons		
Produced	3.70E+08	e+/sec
	Cd-W	
Source Strength	1.00E+08	e ⁺ /sec
	4.00E+08	e-/sec
Positrons Produced	7.30E+08	e+/sec
Tiouuocu	1.000	0,000

Final design used a target radius of 7 cm Cd - 0.0254cm thick W - 0.0127cm thick

Heat Transfer

Capabilities:

- 1. Time dependent
- 2. 1D, 2D axis-symmetric or 3D geometry
- 3. Volumetric Heat source [Fn(t, r, z, theta)]
- 4. Handle 2 material layers with different thermal properties (Cd & W foil)

306.4

305.6

300.8

Heat transfer solver developed using the Finite Volume PDE Python Toolkit: FiPy: <u>https://ctcms.nist.gov/fipy</u>

Heat Source and Material Properties

Table 1. Material Properties

Table 2. Thermal Neutron Flux vs. Reactor Power

	Cadmium	Tungsten		Verificatio		
				Power [kW]	Thermal	
Thermal Conductivity [W/m-k]	97	173			Flux [n/cm^2-s]	
Density [g/cc]	8.65	19.3		0	0.0	
Cp [J/kg-K]	0.23e-3	0.134e-3		100	2.04e11	
Tmelt [K]	595	3695		400	8.16e11	
Macroscopic Absorption Xsec [1/cm]	113.6	1.195	Attenuat flux prof	500 ion Adjusted He files. Thermal fi	1.02e12 eat Flux and Vol / lux = 1.02e12 [n/	Avg Heat /cm^2-sl

• Heating tally (f6) is averaged over entire cell. Assuming local deposition of gammas, heating profile may be adjusted by: $\frac{\bar{\phi}\Sigma_a t}{\phi(z)} = \frac{\bar{\phi}\Sigma_a t}{(1 - e^{-\Sigma_a t})} e^{-\Sigma_a z}$

(This correction is not necessary for thin, well conducting geometries) t=thickness, z=axial location

- Flux scaling done with data in Table
- Addition of W improves thermal performance of composite target.

Target Radius Study

- 2D axis symmetric geometry used. Cd and W modeled.
- Cd thickness = 0.0254 [cm]. W thickness = 0.0127 [cm].
- Boundary and Initial Conditions
 - T0=100K
 - Radial Edge T set to 100K (What we might achieve with LN cooling).
 - Tinf set to 350K for rad heat transfer from target to surroundings.

Target Radius [cm]	Reactor Power [kW]	Cd Vol Heat source [W/cc]	Cd Steady State Max Temp [K]	Time to T=550K [s]
9.0	500	60.89	856.7	26
8.0	500	60.87	705.7	30
7.0	500	60.84	565.4	58
9.0	400	48.71	712.0	24
8.0	400	48.69	585.8	58
7.0	400	48.67	472.4 (472.62)*	inf

* With beam attenuation adjusted axial heat profile

Cd Thickness Study

- 2D axis symmetric geometry used. Cd and W modeled.
- Disk radius = 10.2 cm
- Boundary Conditions
 - T0=100K.
 - Edge T set to 100K (What we might achieve with LN cooling).
 - Tinf set to 350K for rad heat transfer from target to surroundings
- CONCLUSION:
 - Changes to Cd thickness have some small effect target temperature.
 - Vol heat source actually increases with thinner target due to beam attenuation.
 - Effective area available for conduction out of the target decreases.
 - Best to reduce target radius to lower centerline temperature.

Cd thickness [cm]	W thickness [cm]	Reactor Power [kW]	Cd Vol Heat source [W/cc]	Cd Steady State Max Temp [K]	Time to T=550K [s]
0.0254	0.0127	500	60.9	1033	30
0.0229	0.0127	500	65.8	1068	24
0.0203	0.0127	500	71.7	1076	22

Temperature Profiles Sensitivity to Gap Conductance

Cd thickness = 0.0254 [cm]. W thickness = 0.0127 [cm]. Target Radius = 7[cm]. Tedge = 100K. Reactor Pwr = 400[kW].

•Jump seen in axial temperature profile and 500 now gap conductance estimated by parallel conduction model:

$$h_c = \frac{1}{L_g} \left[\frac{A_c}{A} \left(\frac{2k_a k_b}{k_a + k_b} \right) + \frac{A_v}{A} k_f \right] \quad \text{[W/m^2-K]}$$

Ka/b = metal conductance

Kf = void conductance (vacuum: 0.00

W/m-k)

- Ac = conducting area
- Av = void area

A = total interface area

La = Interface width

Target Damage

- •Cd has relatively high vapor pressure.
- •At temperatures >450K,

material loss due to evaporation is significant.

- •At 400kW: Predicted centerline temp of 472.4K
 - Allows approximately 3 hrs of continuous operation until 80% target loss at the centerline.

		Evap Rate	80% Material
		[g/cm^2*s]	Evap [hours]
400	5.86E-06	2.90E-07	168.6332
430	3.62E-05	1.61E-06	30.28961
450	0.000114007	4.78E-06	10.22473
460	0.000198397	8.08E-06	6.039236
470	0.000341165	1.35E-05	3.604665
480	0.000580013	2.25E-05	2.173424
490	0.000975344	3.69E-05	1.323332

$$\Phi_e = \frac{\alpha_e N_A (P_v - P_h)}{\sqrt{2\pi MRT}}$$
 [#/m^2-s]

Na=Avagadros Const Pv=Vapor Pressure Ph=Chamber Pressure Alpha_e=evaporation const (~0.9) wfu.edu/ucerkb/Nan242/L06-Vacuum_Evaporation.pdf

Thermal Design Summary

•To meet thermal performance requirements:

Actively cool target edges

•Target Tedge = 100K

- Rotate larger target / spread out heat load
- Control flux

Quality Cd-W interface contact

•Obtain contact coefficient of > [1000 W/m^2-K]

Target Dimensions & Estimated performance summary:

Parameter	Value	Reactor Power	400 kW	500 kW
Target Radius [cm]	7.0	Max Temperature [K]	472.4	565.4
Cadmium Thickness [cm]	0.0254	Aprox. time to failure.	3 [hrs]	190 [s]
Tungsten Thickness [cm]	0.0127	Qv Cadmium [W/cc]	48.67	60.84

Appendix: Heat Transfer Validation

Simple 2D/1D Steady State Solution Validation

PRELIMINARY DATA

ELECTRON (e-)

strike rate =	1	/	1.0	Χ	10-2
SAL					

error = 0

- E = 2.8 eV
- v = 187.554 mm/ µsec

POSITRON (e+)

strike rate = $1 / 3.0 \times 10^{-2}$ sec

error = 0

```
E = 2.8 eV
```

```
v = 187.554 mm/ µsec
```

DATA COMPARISON

ELECTRON (e-)

strike rate = $1 / 1.0 \times 10^{-2}$ sec

error = 0

```
v = 187.554 mm/ µsec
```

POSITRON (e+)

strike rate = 53 / 1.44 sec E = 512 KeV error = 0 V v = 993.983 mm/ µsec

Radiation and Shielding Concerns

•By Irradiating Cd and W, Gamma radiation is produced

•The following Gamma spectrum is produced for 1 gram of Cd and 1 gram of W

Radiation and Shielding Calculations

•Using a rough plot of the Linear Absorption coefficient in air;

•Then taking the exposure rate to be flux*E*Absorption coefficient/density of air at STP;

•Exposure rate on contact can be calculated easily (which conservatively assumes all photons are traveling towards personnel from a point source, and assumes no self-shielding.

Intensity at a distance can be roughly extrapolated from the on-contact value using:

 $I(d) = S/(4*pi*d^2)$

Radiation and Shielding Conclusions

•Personnel should not be closer to the device than 250 cm while operating

- •For 1 gram of Cd and 1 gram of W:
 - on-contact exposure rate is <0.10 mR/hr
 - •At >250 cm, personnel exposure is < 2E-129 mR/hr (negligible)

•For 33.8 g Cd and 37.7g W:

- on-contact exposure rate is <3.8 mR/hr
- •At >250 cm, personnel exposure is **<3E-100 mR/hr** (Still negligible)

•Shielding is already required for reactor and beam-port operation. <u>No</u> additional shielding, beyond that already required, should be necessary for this device.

Idealized Shielding Box

If desired for reducing other radiation emanating from Beam Port, a box built from lead and aluminum could be used:

Exposure Refinement and Shielding Calculations

- 1. Further refinement of the exposure calculations are unnecessary as seen.
- If shielding is needed, the following equations and build-up factors could be used.

Linear Attenuation Shielding Formula With Buildup:

 $I_{p} = I_{x} * b * e^{-\mu x}$

Where:

- I_{R} = the shielded dose rate
- I_{A} = the initial dose rate
- b = the buildup factor for one energy at the shield thickness x
- μ = the linear attenuation coefficient in –cm
- x = the shield thickness in cm

Linear Attenuation Shielding Formula With Buildup for Multiple Photon Energies:

$I_{B} = I_{A} * (b_{1} * f_{1} * e^{-\mu_{1}x} + b_{2} * f_{2} * e^{-\mu_{2}x} + b_{3} * f_{3} * e^{-\mu_{3}x} ... + b_{i} * f_{i} * e^{-\mu_{i}x})$

Where:

- I_{B} = the shielded dose rate
- I_{4} = the initial dose rate

 b_i = the buildup factor for each energy (up to the ith energy) at the shield thickness x μ_i = the linear attenuation coefficient for each energy (up to the ith energy) in -cm

 f_i = the fraction of I_A that comes from each photon energy (e in MeV) = $\frac{e_i * n_i}{e_i * n_i}$

$$\sum_{i} e_i * n_i$$

 n_{i} = the yield or probability of emission factor for each atomic decay for each energy x = the shield thickness in cm

						Energy (deV)															Е	nergy (1	deV)					
R (mfp)	15	10	8	6	5	4	3	2	1.5	1	0,	.8	0.6	0.5		R (mfp)	15	10	8	6	5 4	3	2	1.5 1	0.8	0.6 0.5	0.4	0.3 0	0.16
0.5	1.13	1.18	1.21	1.25	1.28	1.31	1.34	1.39	1.42	1.45	9 1.	53	1.6	1.75		0.5	1.32	1.35	1.4	1.41	1.44 1.4	3 1.49	1.48 1	43 1.46	1.43 1	.36 1.48	1.45	1.47 1	.45 1.45
1	1.23	1.32	1.39	1.48	1.57	1.62	1.7	1.83	1.93	2.10	0 2.5	22 3	241	2.57	Aluminum Build I In	1	1.55	1.54	1.59	1.58	1.62 1.6	5 1.71	1.78 1	.75 1.76	1.7 1	.56 1.67	1.58	1.6 1	.69 1.72
2	1.41	1.59	1.72	1.91	2.63	2.21	2.43	2.79	3.09	3.50	9 3.5	94 -	1.49	4.87	Aluminum Dullu-Op	2	1.99	1.85	1.199	1.84	1.89 1.9	1 2.11	2.28 2	29 2.23	2.09 1	.85 1.92	1.76	1.66 1	.91 2.03
3	1.58	1.85	2.05	2.33	2.53	2.8	3.18	3.82	4.37	5.35	5 6.1	04 1	7.14	7.91	_ '		2.36	2.0	2.64	2.15	2 59 20	3 2.36	1 15 2	21 2 00	243 2	25 2 26	1.05	1.69 2	05 2 22
4	1.76	2.12	2.37	2.75	3.03	3.4	3.95	4.92	5.78	7.37	7 8.5	51 1	10.3	11.6	Factors	5	4.61	3.54	3.17	2.91	3 3.1	2 3.55	3.9 3	.81 3.32	2.95 2	41 2.40	2.06	1.7 2	.05 2.42
5	1.95	2.4	2.71	3.18	3.53	4.02	4.75	6.08	7.3	9.64	4 11	3 1	4.1	16.1	1 001015	6	6.26	4.4	3.79	3.4	3.48 3.6	1 4.12	45 4	34 3.68	3.22 2	58 2.53	2.15	1.72 2	.09 2.49
ĉ	2.15	2.68	3.04	3.62	4.04	4.64	5.57	7.3	8.62	12.1	1 14		18.4	21.3		7	8.56	5.5	4.53	3.94	4.02 4.1	5 4.72	5.08 4	.85 4.00	3.45 2	72 2.65	2.22	1.73 2	2.1 2.56
6	2.35	2.97	3.39	4.00	+.30	5.00	0.42	0.57	10.6	14.1	0 01		5.5	213		8	11.8	6.87	5.41	4.56	4.6 4.7.	3 5.34	5.68 5	36 4.30	3.67 2	.85 2.76	2.28	1.75 2	.11 2.64
10	2.33	3.20	3.74	4.51	6.16	7.92	9.05	12.7	16.2	24	5 22		11.9	50.5		10	22.6	10.8	7.76	6.08	6.01 6.0	6 6.73	6.95 (\$4 4.90	4.1 3	.11 2.97	2.41	1.77 2	.13 2.8
15	4.11	5.45	6.27	7.79	8.01	10.6	13.7	20.3	22.2	44.1	1 50		4.0	107		15	117	338	19	12.1	11.1 10.	4 10.8	10.3 9	.08 6.26	5.03 3	.65 3.41	2.66	1.83 2	.15 3.28
20	5.36	7.15	8.18	10.3	11.8	14	18.6	28.5	39.4	68/	4 95	4	143	189		20	594	105	45.9	23.1	19.1 16.	4 15.7	13.9 1	1.8 7.44	5.82 4	.08 3.77	2.87	1.87 2	.16 3.85
25	6.71	8.96	10.1	12.8	14.7	17.5	23.6	37.4	52.7	96.	2 13		217	296		25	2930	319	108	42.6	31.3 24.	3 21.2	17.7 1	4.6 8.48	7.00	.44 4.07	3.04	1.91 2	.16 4.5
30	8.15	10.9	12.2	15.2	17.6	21.1	28.8	46.8	67.1	127	7 15	ю .	306	430		30	14100	944	249	12.7	49.3 347	4 27.4	21.5 1	0.7 10.2	7.09 4	02 4 56	3.18	1.94 2	17 5.45
35	9.63	12.8	14.2	17.5	20.6	24.8	34.1	56.6	82.3	162	2 24	17 .	410	591		40	105000	7750	1240	221	111 625	4 414	29.1 2	2.2 11.1	813 5	28 4 76	3.41	1.99 2	18 9.1
40	11.1	14.8	16.2	19.5	23.3	28.4	39.4	66.6	98.2	195	9 31	10 :	529	780															
_																		_	_										
					E	crov (M	V)															E	Energy (MeV)					
R (mfo)	0.4	0.3	0.2	0.15	0.1	0.08	0.04	5 0.1	05 0	04 7	0.01	0.02	0.01	5		R (mfp)	0.14	0.13	0	12	0.11	0.1		0.09	0.089	0.088	0.06	0.06 (0.05 0.04
n (nup)																0.5	1.46	1.42	1.46	E+00	1.45E+00	1.44E	400 1.	48E+00	1.48E+0	0 1.07	1.05	1.02	1.02 1.04
0.5	1.76	1.85	2.1	2.36	2.43	2.24	1.85	5 1.0	51 1.	.33 1	1.16	1.05	1.00			1	1.81	1.51	1.85	E+00	1.88E+00	1.89E	+00 2	00E+00	2.01E+0	9 I.I	1.08	1.04	1.02 1.04
1	2.77	3.06	3.64	4.12	4	3.41	2.40	5 1.	9 1	15 3	1.23	1.07	1.03			2	2.41	1.61	2.62	E+00	2.15E+00	3.05E	400 3.	49E+00	3.54E+0	3 1.12	1.1	1.05	1.03 1.02
2	5,46	6.35	7.76	8.5	7,44	5.66	3.44	2.	72 L	.77 1	1.32	1.10	1.04			3	2.96	1.01	3.52	E+00	4.206+00	4.92E	+00 6.	195+00	0.39240	1 1.14	1.11	1.06	1.04 1.02
÷.	9,06	16.2	13.2	20.6	16.2	1.87	4.0	1 20	24 L	91 1	1.39	1.12	1.00			5	4.33	1.76	640	E+00	9.71E+00	1.445	+01 2	31E+01	2415+0	1 1.16	1.13	1.05	1.04 1.02
1	15.5	10.3	19.8	203	15.4	10.1	5.1		12 2	12 1	1.45	1.15	1.00		Load Ruild-Lin	6	5.23	1.8	8.77	E+00	1.52E+01	2.546	401 4.	59E+01	4.85E40	1 1.18	1.14	1.07	1.05 1.03
~	254	311	37.5	37.1	24.4	14.7	6.6	7 4	01 2	22	154	1.15	1.0		Leau Dullu-Op	7	6.41	1.84	1.23	E+01	2.41E+01	4.50E	401 8.	78E+01	9.38E40	1 1.19	1.15	1.07	1.05 1.03
	12.9	40.6	48.8	47.3	29.6	17.1	7.41	4.	33 2	15	1.57	1.16	1.03			8	7.68	1.87	1.72	E+01	3.77E+01	7.67E-	+01 1.	66E+02	1.79E+0	2 1.19	1.16	1.06	1.05 1.03
	41.5	51.7	61.8	58.8	35.2	19.6	8.14	4 4.1	63 2	1.6	1.61	1.17	1.03		Factors	10	12.2	1.92	3.39	E+01	9.20E+01	2.32E	402 6.	11E+02	6.71E40	2 1.21	1.17	1.08	1.05 1.03
8		78.8	93.9	86.3	47.7	24.9	9.55	» 5.	2 2	79	1.67	1.18	1.06		1 401013	15	45.7	2.03	2.34	E+02	1.08E+03	4.33E	+03 1.	75E+04	2.00E+0	4 1.24	1.19	1.09	1.06 1.04
8 10	62.5		215	184	86.7	39.6	13.3	2 6.	5 3	1.2 0	1.78	1.21	1.05			20	220	2.12	2.06	E+03	1.55E+04	9.54E	404 5.	66E405	6.71E40	5 1.26	1.21	1.1	1.06 1.04
8 10 15	62.5 139	181	++-								10000					25	1190	2.19	2.01	E+04	2.496+05	 2.33E 	406 L	9912H07	2.44E+0	/ 1.28	1.22	LH .	1.07 1.04
8 10 15 20	62.5 139 253	181 342	407	331	137	56.2	16.3	7 7.1	67 3.	.53	1.87	1.23	1.1				1100			E. O.F.	4 4447 - 646		100 0	1000.000	0.000-0				1.003
8 10 15 20 25	62.5 139 253 410	181 342 572	407	331 534	137 198	56.2 74.1	16.3	7 7.1 2 8.1	67 3. 75 3.	81 1	1.87 1.94	1.23	1.1			30	6680	2.25	2.04	E+05	4.19E406	6.02E	407 7.	40E+08	9.36E+0	8 1.3	1.24	1.11	1.07 1.04
8 10 15 20 25 30	62.5 139 253 410 614	181 342 572 882	407 688 1070	331 534 801	137 198 271	56.2 74.1 94.8	16.1 20.1 23.5	7 7.1 2 8.1 5 9.1	67 3. 75 3. 76 4.	.81 .06	1.87 1.94 2	1.23 1.25 1.26	1.1			30 35 40	6680 38500 22500	2.25	2.04	E+05 E+06 E+07	4.19E+06 7.20E+07 1.25E+09	6.02E 1.61E- 4.35E-	407 7. 409 2. 410 1.	40E+08 86E+10 12E+12	9.36E+0 3.74E+1 1.53E+1	6 1.3 0 1.31 2 1.32	1.24 1.25 1.26	1.11 1.12 1.12	1.07 1.04 1.08 1.05 1.08 1.05

Equations from http://www.hps.org/documents/shielding of gamma radiation.pdf, tables from Nucleonica.com

Interaction of Positron and Electron capture and their Energy loss

Aerosol Chamber: Xu Jialiang, Liu Bin, Wang Kai, & Hu Wenchao (2012). MCNP simulation of neutron generator sterilization of anthrax contamination. Chinese Journal of Radiological Health, 21(1), 8-10. Biegalski, S. R., and O. Doron. 2004. Recent developments in positron research. J of Radioanalytical and Nuc Chem 262 (3): 789-796.

Beam Line: https://shop.kock-sack.de/product/view/14143511/17626368?changeLanguage=38 Coils: http://electron6.phys.utk.edu/PhysicsProblems/E&M/4-Quasi-static/inductance.html Secondary Coil: https://courses.lumenlearning.com/suny-physics/chapter/23-9-inductance/

Danielson, et al. 2013. Progress towards a multicell positron trap. AIP Conf. Proc. 1521: 101-112.

Golge, et al. 2014. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility. arXiv

Hugenschmidt, C. 2011. The status of the positron beam facility at NEPOMUC. Journal of Physics: Conference Series 262: 1-5.

Image 23: Zhang et al. 2017. http://arxiv.org/pdf/1707.00292

Image 24: https://www.hzdr.de/db/Cms?pOid=11150&pNid=69

Ketelaer, Jens. 2010. The construction of Triga-Trap and direct high-precision Penning trap mass measurements on rare-earth elements and Americium. Ph. D. dissertation at Mainz.

Köymen, et al. 1999. Development of TIPS. Nuc Instr and Meth in Physics Res A 422: 479-483.

Voltage: Jailany, Ahmed. (2019). Effect of Forced Air Cooling on Efficiency of Photovoltaic Module. 3. 773-786. 10.21608/mjae.2019.94778.

Xu, et al. 2014. Positron beam facility at Kyoto University Research Reactor. Journal of Physics: Conference Series 505:1-5.