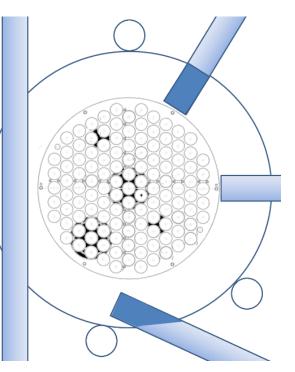
SEPTEMBER 2024

DESIGNING A WATER-TIGHT TORLON CONTAINER FOR MEDICAL ISOTOPE PRODUCTION USING THE CENTRAL THIMBLE OF THE NETL NUCLEAR REACTOR


DONALD NOLTING, JOSEPH LAPKA, WILLIAM S. CHARLTON, RODRIGO VIVEROS-DURAN, AND MARK ANDREWS

Nuclear Engineering Teaching Laboratory, The University of Texas at Austin

The UT-NETL Central Thimble (CT)

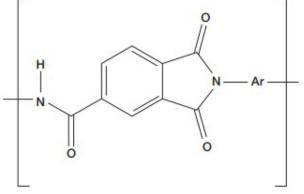
- The UT-NETL Central Thimble (CT) is our highest flux irradiator
 - 1.35"ID, water-filled tube in the center of the core
 - Thermal flux is 3.0E13 n/cm²/sec at 1 MW
- NETL produces medical isotopes in the CT
 - including Sm-153 with 100-1000 mCi per target
- Currently no automated system for sample removal from CT
 - Samples are removed and placed into a lead transfer pig for movement to hot cells on lower research level
- This leads to potential for radiation dose to staff from exposure to sample and its container

Source of Radiation Dose

- While the medical isotope sample is a high activity,
 - the primary source of dose was from the irradiation container holding the target
- Sample packaging:
 - Target material inside an inner flame sealed quartz ampoule
 - Inner ampoule, dosimetry wire, and quartz wool (to protect sample) is packaged inside a larger outer quartz ampoule providing secondary containment
 - Sample is then placed within a container along with Pb ballast for insertion into the CT

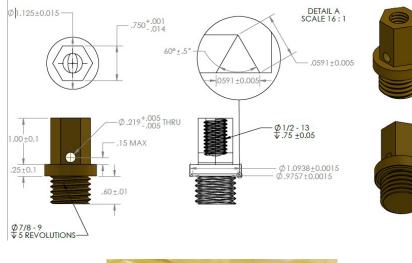
Aluminum CT Containers

- Composed of 1100 Aluminum, General Atomics design, primary use in RSR
- Not water-tight
- Needs ballast to counteract buoyancy in CT
- Highly radioactive after isotope production irradiations in the CT
 - Initial dose readings were 1-2 R/hr at 1 foot


Q: How could we decrease dose potential to staff?

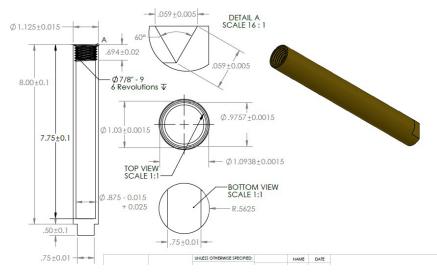
- One answer was to study alternatives to the aluminum CT tubes and the Pb ballast used
- We explored a variety of material options including several high temperature polymers (PEEK, etc.)
- At a previous TRTR, Serva Energy suggested Torlon as an excellent option

Torlon


- High-performance thermoplastic (polyamide-imide)
- High impact and mechanical strength
- Retains strength at high temperature
- We questioned its resistance to neutron and gamma-ray radiation
- Uncertain the degree of activation that would occur during long isotope production runs in the CT

General molecular structure of Torlon[®] PAI

Torlon: Container Design


Multiple irradiations, approximately 120 hours.

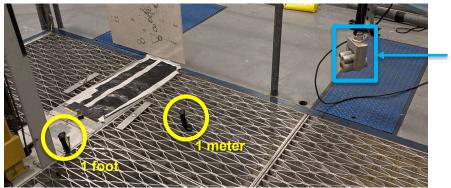
Unirradiated Torlon® PAI container.

First irradiation, approximately 17 hours.

Technical drawings courtesy of Rodrigo Viveros Duran

Aluminum vs Torlon Experiments

- Experimental Design:
 - Four CT runs
 - Two each with Aluminum and Torlon containers
 - One experiment would use lead wire slugs as ballast and the second would use graphite slugs


Torlon Tube Irradiation Performance

- Irradiation performance has been outstanding
 - We have irradiated tubes for over 150 hours with no significant dimensional changes, only discoloration
- Tube design with wrench flats allows for easy cap removal with manipulators inside the hot cells
- The lead crush ring has been demonstrated to provide a water-tight seal on Torlon tube

Experimental Procedure

- 8-hour irradiations at 900 kW
- Containers left to decay for 15.5 hours
- Container was suspended above CT opening via wire
- Gamma dose measured at 1 foot and 1 meter before and after removal from CT with RadEye viewed via pool camera
- Beta and beta+gamma doses measured with an ion chamber (Ludlum 9-3) at approximately 5 inches from the container

Camera 🥿

CT Exp. 1: Al tube w Quartz Ampoule & Pb Slugs

1 foot

1 meter

Aluminum vs Torlon Results

Container	One Foot (۲)		One Meter (γ)		Ion Chamber with Window (~ 5")	
	Before* (mR/hr)	After* (mR/hr)	Before* (mR/hr)	After* (mR/hr)	Closed (ɣ) (R/hr)	Open (γ + β) (R/hr)
AI + Pb slugs	0.074	785	0.077	84.2	3.4	12
Al + Graphite slugs	0.056	763	0.063	51.3	2.2	14
Torlon + Pb slugs & Pb O-ring	0.042	111.5	0.044	11	0.200	0.360
Torlon + Graphite slugs & Pb O-ring	0.042	57.5	0.046	6.2	0.133	0.280
*Before = γ dose before pulling the container out of the CT mR = mrem R = rem						

*After = γ dose after pulling the container out of the CT

mR = mrem, R = rem

Aluminum vs Torlon Conclusions

- Torlon and graphite decrease potential dose to staff by more than 13× post-irradiation vs aluminum with Pb ballast
- Torlon is easier to handle after irradiation
- Water-tight Torlon prevents increases flux to the target and removes possibility of damage to target from water
- Torlon can be irradiated in the CT for over 150+ hours without degradation to the container

Acknowledgments NETL Staff

- Tracy Tipping Health Physicist/Lab Manager
- Tristan Brannon Reactor Operator
- Rodrigo Viveros Duran Reactor Operator

- James Terry Reactor Manager
- Mark Andrews Research Technician
- Joseph Lapka, Ph.D. Research Fellow