

Exceptional service in the national interest

Development of an Enriched Lithium Deuteride (⁶LiD) 14-MeV Neutron Spectrum Modifier for The Annular Core Research Reactor Facility

Tracey Spoerer Reactor Facility Development (Org. 01391)

09/30/2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Combined Radiation Environments Testing

 \bigcirc

Current Facilities Used by Sandia for 14-MeV Testing

- National Ignition Facility (NIF) Livermore, CA 300 ps burn width
	-

 $\bf \bm \theta$

- $1.5E+16$ neutron fluence in $4π$
- Can field 4 1" inch tall, 4" wide components
- 1 shot per day, ~3 days per year for certain experimenters at Sandia
- - OMEGA Rochester, NY
• 100 ps burn width, more isotropic than NIF
	- 1.8E+14 neutron fluence in 4π
	- Usually fields 1.5" diameter circuit boards
	- 10-14 shots per day, ~3 days per year for certain experimenters at Sandia
- - ASP (AWE) London, UK Steady-state deuteron accelerator (tritium target)
	- $1.5E+10 \frac{m^2-s}{s}$ at 1 cm
	- 6 hrs. per day, 9 days every 2 weeks
- SNL Ion Beam Laboratory (IBL) Albuquerque, NM
• 5E+08 to 1E+09 n/cm²-s, ~1E+13 n/cm² fluence over one week
	-
	- 50 100x less powerful than ASP, but can operate 24/7 until the target is depleted (~1 week)

Challenges: • Throughput vs. fluence, or lack of both

Benefits of a Reactor-Based Source

Steady-state Operation:

- Allows for experimenters to look for single event or combined effects in active devices
- Can achieve high fluences
- Device can anneal over time of irradiation
- More isotropic fluence on device
- Threshold for most experiments is \sim 1E+12 $n/cm²$
- Goal for most is \sim 1E+13 n/cm²
- Why not use an accelerator?
	- Generally low flux
	- Anisotropic
	- Lack of combined effects

Current Neutron Irradiation Capabilities at ACRRF

- ACRR: BeO-UO₂ (ceramic in TRIGA cladding)
- FREC-II: UZrH (ACPR's gapped TRIGA fuel)

- In both cases, the neutron energy upper limit is (mostly) governed by fission spectrum
- What is the limit for $235U$? ~8 MeV? With what probability of emission?
- Some systems we care about may be subjected to energies from 14-MeV (D-T fusion) neutron energies down to thermal
- Easy to slow a neutron down to a (more or less) specific energy, difficult to gain significant energy

6LiD as a 14-MeV Neutron Source

- Creation of tritium atom from absorption of thermal neutron:
	- 6 Li + n → T + 4 He
	- \sim 938 barns

 $\bf \bm \Phi$

- Transport of tritium into lattice deuterium atom, resulting in fusion:
	- $D + T \rightarrow {}^{4}He + n$
	- 6 Li + T $\rightarrow {}^{8}$ Be + n
	- Result: ~14.1 MeV neutron
- Conversion efficiency typically below 1E-03 $n_{14\text{-MeV}}/n_{\text{thermal}}$

• But wait... I thought we needed a "small fission bomb..." to do this... \blacksquare My intent was to make an

MCNP joke about 10 lost thermal neutrons but they are difficult to find in certain applications.

Examples of Reactor-Based Converters

- 2017 High Flux Engineering Test Reactor – China (125 MW)
	- Flux conversion ratio: 2.71E-4
	- Converter material: enriched LiD 88.5%

 $\bf \bm \Theta$

Irradiation channel Outer annular tube Conversion target

Irradiation tube

Coolant

Table 1. Conversion ratio of thermal to 14MeV neutron.

Design of a 6LiD Spectrum Modifier for FREC-II

Requirements:

 $\textcolor{red}{\textcolor{blue}{\textbf{m}}}$

- Achieve conversion ratio equal to or greater than HFETR
- Perform pulse and steady-state operations
- Fit in either ACRR $(-9'')$ or FREC-II $(-21'')$ central cavities
- Accommodate samples ~6" in diameter
- Air-cooled
- Easily removed/installed
- Achieve fluence of 1E+13 n/cm2
- Retain tritium
- Constructed of low activation hazard materials
- Enable the isolation of 14-MeV effects

Irradiation channel Outer annular tube **Conversion target**

Coolant

Irradiation tube

Design of a 6LiD Spectrum Modifier for FREC-II

 \bigcirc

Steady -State Predicted Performance

• 6LiD bucket located in 21" FREC-II cavity (-\$0.50)

 $\bf \bm \Phi$

- Why FREC-II? Close to -\$4.25 limit and radial PPF of 1.72 in ACRR
- ACRR core max power peaking factor of 1.45 (must be ≤1.52)
- Fotal number of fuel elements
 ≥ 1.46 is 6 (must be 20 or less)
- Product of the highest FREC Core Radial PPF and the FREC to-ACRR coupling factor
(based on average power) is ≤ 0.784

Pulse Safety

• \$4.99 pulse

 $\bf \bm \Phi$

- Max radial power peaking factor of 2.15 in ACRR core
- 0.89 in FREC-II
- Currently no intent to use in pulsing operations, but is possible

Predicted Steady-State Neutronic Performance

• MCNP model with 26 group cavity spectrum source histogram

- Mode D,n but no T reaction tally. Estimate fusion neutron production from 6Li absorption rate
- Thermal to 14-MeV conversion ratio of about 1E-03 for a thickness of 0.5 cm
- 14-MeV flux of about 1E+09 n/cm2-s

Thermal Performance/Considerations

- Initial concept used cooling fins to dissipate heat
- Found to have negligible impact in natural convection regime
- Fins removed for ease of manufacturing

- Thermocouple access holes in upper flange
- Need to keep temperature below 150 °C to prevent formation of LiAlH corrosion product (degrades integrity of vessel)

Acquiring 6LiD from Y-12 National Security Complex

 \bigcirc

Safety Considerations

- Moisture is very bad... Particularly when LiH is powdered
	- powdered
• LiH reacts with moisture to form a corrosion layer, releasing hydrogen gas.
	- Corrosion layer is composed of a thin $Li₂O$ buffer layer
	- Followed by a layer of LiOH

- Followed by another layer of LiOH·H₂O on top of the
LiOH layer if RH > 15%
- Long story short: takes the oxygen from water and <u>releases hydrogen gas that ignites</u>
- Vessel must remained sealed to retain hydrogen gasses and nitrogen fill gas
- Coke ash is most effective at fire suppression (main constituent SiO 2)
	- Robs the LiH of moisture
	- Not effective if vessel is breached and dropped in the pool (unlikely)
- Drop test resulted in minor 1/8" dent

Remaining Work

- Ship from Y-12 back to Sandia
	- NRC 741 form
	- Sandia authorization to ship
	- Ship

- Receipt inspection
- Weld fill port screws (laser or electron beam)
- Lithium hydride fire burn rate calculations
- Perform burnup and hydrogen pressure calculations
- Take experiment plan back to committee
- Initial characterization
- Detailed radiation metrology and characterization

Acknowledgements and Thanks

- Dave Clovis (Concept, research & proposal)
- Augie Chapa (mechanical design & manufacturing)
- Zack Dodson (Modeling)

- Melissa Moreno (Modeling)
- Folks at MC&A (Spoon-feeding me the OANM request and ATS process)
- Elijah Barlow, Nicole Lobur & Dennis Miller of Y-12 LiD development team
- Richard Pratt & Ken Morris (Entertaining my odd queries)