Design Overview of the MSR-1

Brazos Fitch TRTR Conference October 1st, 2024

1954-1969 MSR HISTORY

- (Nov 1954) Aircraft Reactor Experiment (ARE) at Oak Ridge National Laboratory (ORNL) is the first reactor to demonstrate the feasibility of molten-salt fuel.
- (1964) Molten Salt Reactor Experiment (MSRE) is constructed at ORNL.
- (June 1965) MSRE goes critical utilizing uranium-235.

٠

(Oct. 1968) MSRE goes critical utilizing uranium-233.

2016 - 2019 EARLY ENGAGEMENT

- (2016) Nuclear Energy eXperimental Testing (NEXT) Lab established at Abilene Christian University (ACU).
- (2017) Douglass Robison commits \$3.2M gift to the NEXT Lab to support molten salt research.
- (Dec. 2018) Secretary of Energy, Rick Perry, sends representatives from the Department of Energy (DOE) Office of Nuclear Energy (NE) to visit NEXT Lab at ACU.
- (Jan. 2019) Robison and ACU representatives visit the DOE in Washington D.C.
- (Nov. 2019) DOE encourages the development of a Molten Salt Research Reactor (MSRR) at ACU and provides Programmatic Letter of Support.

Natura Resources

We don't need more climate promises.

We don't need more paper reactors.

We need **PERFORMANCE.**

Since 2020 Natura Resources has brought a West Texas oil & gas mentality to the advanced reactor industry. Our unique approach to advanced reactor development has quickly elevated us to a leadership position in the industry.

This mentality requires a cost-effective and efficient approach to everything we do:

- Lean Executive Team
- University Sponsored Research
- Continuous Research, Development & Experimentation
- Advanced Research Reactor Demonstration Unit

Natura Resources Research Alliance

0

5

4

Demonstration Reactor Facility

Science & Engineering Research Center (SERC)

The MSRR will be deployed in a multi-use research facility on the campus of Abilene Christian University (ACU). Groundbreaking took place in March 2022 and the facility was completed in August 2023.

The **SERC**, completed in August 2023, is the only current advanced reactor demonstration facility in the U.S.

March 2022

August 2022

August 2023

WWW.NATURARESOURCES.COM

Natura Resources MSR-1 at ACU Receives Historic NRC Construction Permit

ABILENE CHRISTIAN UNIVERSITY

Resources

TENU

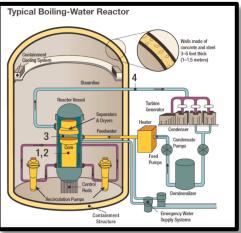
LF-MSR Technology

Natura Resources LF-MSRs have two specific characteristics that raise efficiency, increase safety, enable various commercial applications and provide access to a wide range of radioisotopes, while at the same time decrease waste.

MOLTEN SALT COOLANT

Molten Salt Reactor (MSR)

High Temperature – Low Pressure

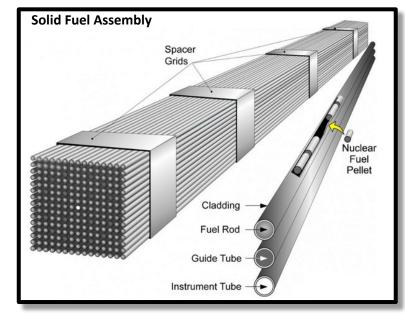

- Salt Thermal Properties
 - Melting Point: ~450°C
 - Operating Temp: ~650°C
 - Boiling Point: ~1430°C
- Operating Pressure: 15-20 psi **By comparison...**
- Light Water Reactor (LWR)
 - 300°C water @ 2,250 psi

High Temperature

- Convert thermal energy to electricity with almost 40% increased efficiency
- Meet the thermal energy needs of industries requiring **high process heat** (refining, chemical production, etc.)

Low Pressure

- Increased safety → no risk of radioactive vapor release
- Decreased cost → reduced quantities of concrete and steel for high-pressure containment.



UF4 fuel dissolved in the molten salt coolant provides two primary benefits:

1) Enhanced Fuel Utilization

• Greater burnup of fuel means there is significantly reduced nuclear waste

2) Radioisotope Access

• Isotopes produced in the fission process have applications ranging from **medical treatments to nuclear batteries** and can be extracted and utilized.


Natura Resources R&D: Molten Salt Test System (MSTS)

PUMP

PURIFICATION SYSTEM

•	50 Gallons	•	Salt Purification System	•	Experimental Tank
•	FLiNak Salt	•	 Drain tank, configuration, and gas system similar to MSRR to further validate operations 	•	Operational demonstration of patented technologies
•	700°C				

EXPERIMENTAL TANK

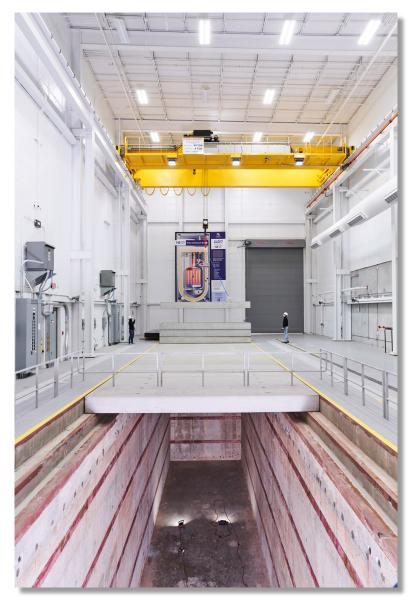
DRAIN TANK

Demonstration Reactor (2026)

Molten Salt Research Reactor (MSRR)

Design	Thermal Output:	1 MW _{th}					
	Electric Output:	n/a	a table				
	Fuel:	HALEU (enriched to 19.5%) as UF4 dissolved in LiF-BeF ₂ -UF ₄ (FLiBe)					
	Moderator:	Graphite					
	Coolant Salt:	FLiBe					
	Const. Material:	Type 316H SS					
	Deployment:	2026					
	Features:	 Passive shut down & cooling Off-site, modular construction 					
	Commercial Benefits:	 Demonstrates licensure with NRC Produces data to verify models & codes 					
License	 August 2022 – CP November 2022 – Sept 2024 – CP Ap Q3 2025 – Expect Q3 2026 – Expect 	- CP Docketed for Review oproval ed OL Submission					
Site	University (ACU) • March 2022 – Gro	ng Research Center (SERC) at Abilene Christian Dundbreaking mpleted (17 months)					
Engineering & Design		onceptual Design Complete ed Detailed Engineering & Design Completion					

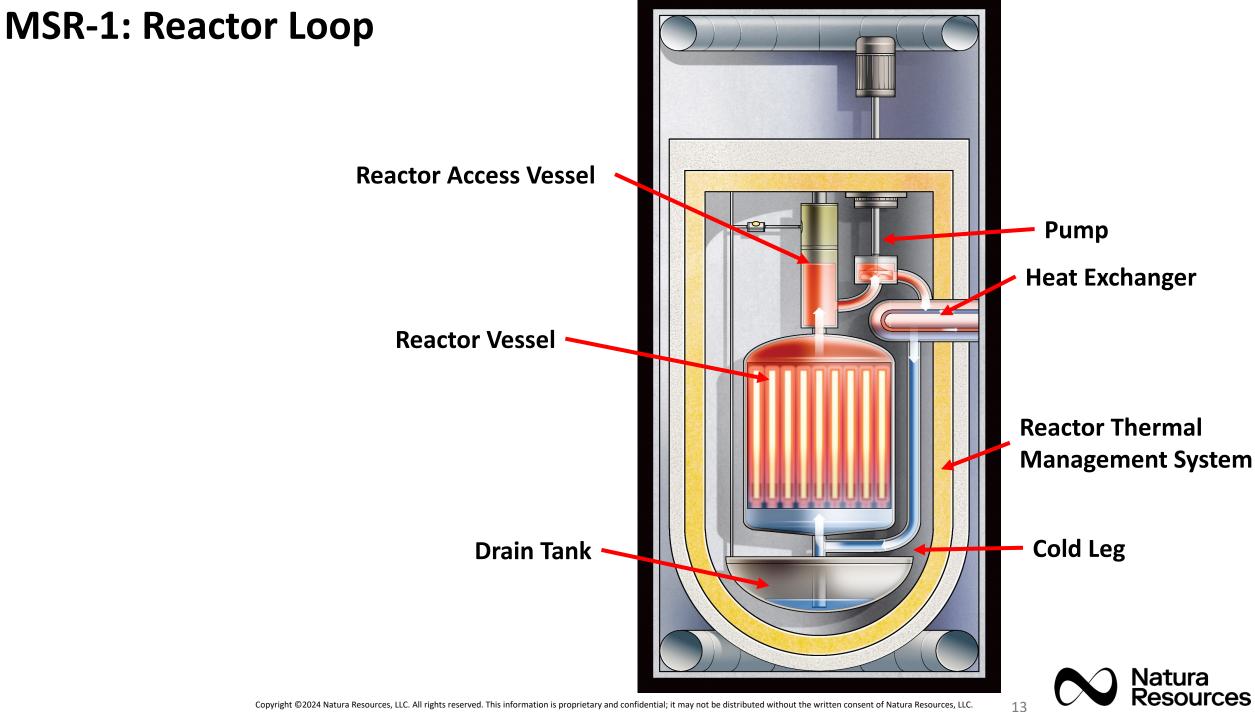
Demonstration Reactor Facility


Science & Engineering Research Center (SERC)

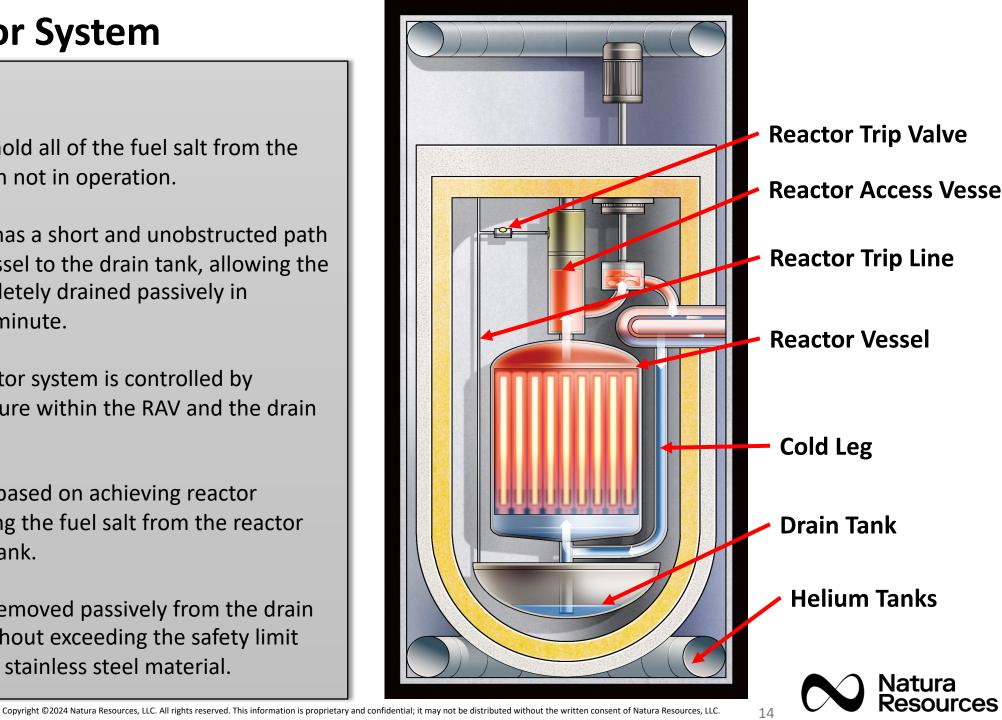
Demonstration Reactor Facility

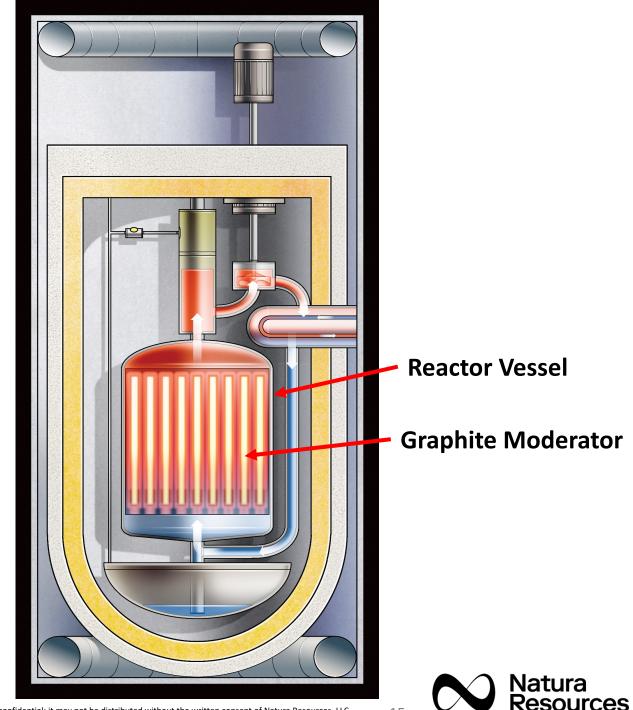
Research Bay

11

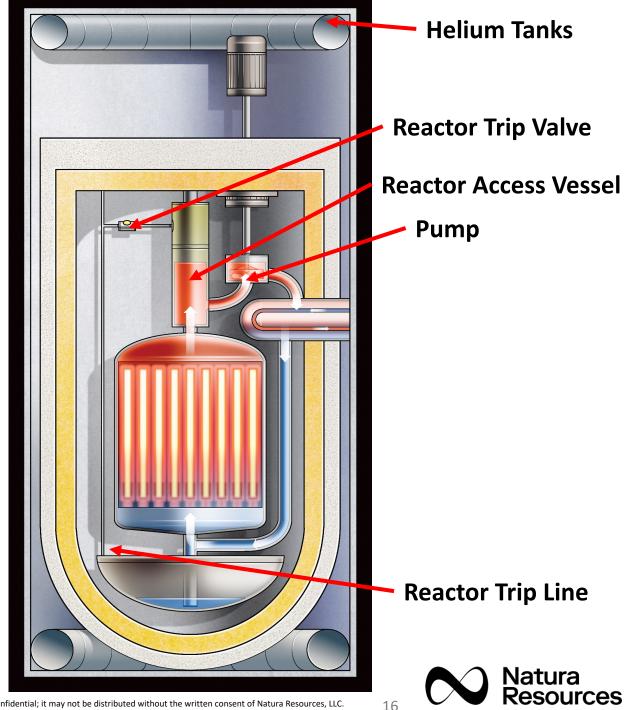

MSR-1: Fuel Handling System

- When the fuel salt is received, it is inserted into the FHS. The fuel salt will be sparged with HF, H2 and He gases to remove impurities.
- Once the salt is confirmed to be the desired composition and purity, it is transferred into the reactor system. The salt travels through heated transfer lines to the drain tank.
- The FHS is capable of handling used salts.
- The Fuel salt purification vessel will be constructed from UNS N02201 (NI-201, low carbon nickel).
- FHS is contained within an enclosure to mitigate the release of radionuclides.

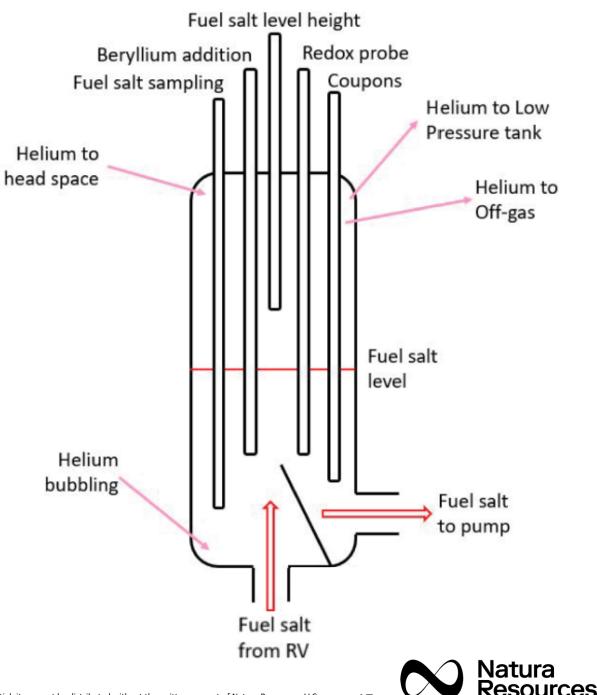

NOT the Fuel Handling System! This is the Salt Purification System for the Molten Salt Test System


Drain Tank

- The drain tank can hold all of the fuel salt from the reactor system when not in operation.
- The MSRR fuel salt has a short and unobstructed path from the reactor vessel to the drain tank, allowing the fuel salt to be completely drained passively in approximately one minute.
- Draining of the reactor system is controlled by equalizing the pressure within the RAV and the drain tank.
- Safety analyses are based on achieving reactor shutdown by draining the fuel salt from the reactor vessel to the drain tank.
- Decay heat can be removed passively from the drain tank indefinitely without exceeding the safety limit temperature for the stainless steel material.

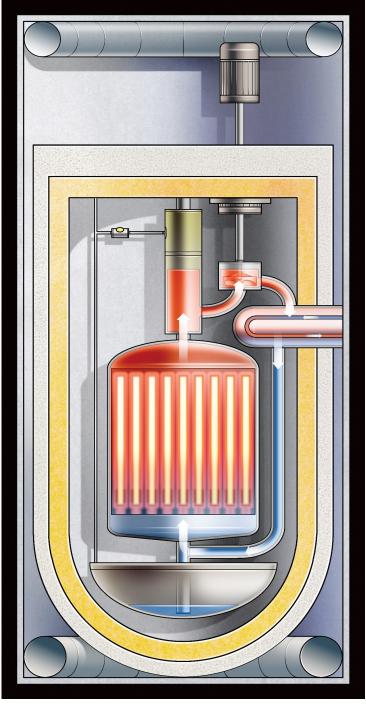

Reactor Vessel

- The reactor vessel is approximately 52 inches in diameter and 70 inches tall.
- Constructed out of Type 316H to the requirements of ASME BPVC Section 3 Division 5.
- The reactor vessel is the only location where criticality can be reached and sustained in the MSRR.
- The reactor vessel surrounds and supports the cylindrical graphite core.
- Control rods provide reactivity control during normal operations.
- Safety analyses are based on achieving reactor shutdown by draining the fuel salt from the reactor vessel to the drain tank.


Reactor Access Vessel

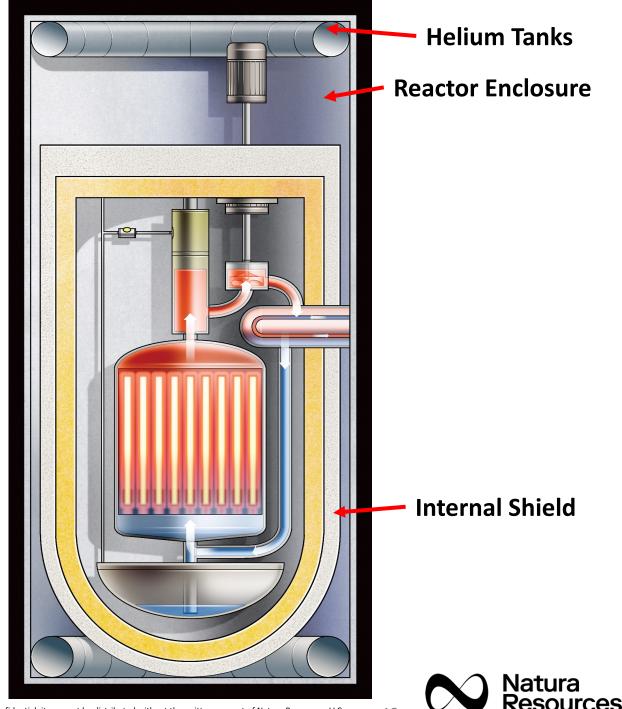
- The RAV is situated directly above the core to accommodate expansion or contraction within the loop.
- The MSRR is refueled by adding additional UF4 directly to the fuel salt through the RAV.
- Coupons will be located in the bypass line from the pump discharge to the RAV.
- Redox potential may be measured directly with probes mounted from the top of the RAV.
- Helium can be actively bubbled into the fuel salt through the RAV to remove xenon and krypton as an experiment.
- Fuel salt and the gas headspace will be sampled for analysis from the RAV.

Reactor Access Vessel


- The RAV is situated directly above the core to accommodate expansion or contraction within the loop.
- The MSRR is refueled by adding additional UF4 directly to the fuel salt through the RAV.
- Coupons will be located in the bypass line from the pump discharge to the RAV.
- Redox potential may be measured directly with probes mounted from the top of the RAV.
- Helium can be actively bubbled into the fuel salt through the RAV to remove xenon and krypton as an experiment.
- Fuel salt and the gas headspace will be sampled for analysis from the RAV.

17

MSR-1: Off-Gas Cleanup


- The MSRR is equipped with an off-gas system that can relocate fission gases from the reactor headspaces through stainless steel circuit components for sequestration and decay.
- The off-gas system cleans helium contaminated with fission gases for reuse or release.
- Without an off-gas system in operation, gaseous fission products and their daughters build up in the reactor headspace.
- The off-gas system cleans the radioactive gases from the reactor GMS using a holdup container and two charcoal beds. Two air-cooled charcoal beds hold up the fission gasses until they either decay away or decay into solids, which remain in the charcoal.
- Off-gas content and performance is monitored by samples taken at designated locations
- The off-gas system will be fully enclosed within the offgas cleanup enclosure, which is safety related.

Reactor Enclosure

- The entire reactor system is mechanically supported inside a 316H steel reactor enclosure designed to isolate all potential radiological releases from the reactor loop.
- The reactor enclosure is a leak-tight fission product barrier that operates under slightly negative pressure under normal and accident conditions.
- Reactor enclosure gas will be monitored for radionuclides and periodically sampled.
- The exterior surface of the reactor enclosure is cooled during operation.
- The reactor enclosure lid has additional hatches for equipment and personnel that are sealed during operation but can be opened for maintenance.

