October 2024

Nathan Manwaring Advanced Test Reactor Reactor Engineering

ATR Power Indications

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy

Outline

- Introduction to Advanced Test Reactor (ATR)
 - Idaho National Laboratory
 - Fuel Arrangement
 - Flux Traps
- Power Indications
 - Nuclear instruments
 - LPCIS
 - WPC
 - No assumed symmetry!

Introduction to ATR

- More than 70 test positions
 - 9 flux traps
 - 6 (of the 9) have loops
 - Independent Chemistry, temperature, and pressure
- Control Elements
 - 6 Safety Rods (annular)
 - 16 Outer Shim Control Cylinders (OSCCs)
 - 22 Neck Shims
 - +2 Regulating Rods
- 40 Fuel Elements
 - 19 plates
 - 48" (120cm) active length
 - Serpentine arrangement

Introduction to ATR

- Design Summary
 - 250 MW_{th} (Typically 110MW_{th})
 - Max thermal flux:
 - 10¹⁵ n/cm²-s
 - Max fast flux:
 - 5×10¹⁴ n/cm²-s
- Companion ATRC
 - $-5 \text{ kW}_{\text{th}}$
 - Pool type

Ordered by Increasing Power

	Approximate Core Power N _F ≤ 250 MW	
Log Count Rate Meters (LCRMs)	10 ⁻¹¹ – 10 ⁻⁵ N _F	
Log-N Periods (Log-Ns)	10 ⁻⁷ – 10 N _F	
Wide Ranges (WRs)	10 ⁻⁶ – 1.5 N _F	N Bi
Neutron Levels (NLs)	10 ⁻⁴ – 0.015 N _F (depressurized) 0.005 – 1.5 N _F (pressurized)	
Lobe Power Calculation and Indication System (LPCIS)	>1 MW	
Water Power Calculator (WPC)	>3 MW	

Nuclear Instrument (NI) Locations

Visible curved thimbles

Experiment tubes removed for Core Internals Changeout

Nuclear Instrument (NI) Locations

LABORATORY

LCRMs

- Fission chambers
 - Really sensitive
- Adjust by physically raising
- While shutdown
- "Source range"

LCRMs

- Sb Source for >2cps
- Used for fuel loading after core reconfiguration

IDAHO NATIONAL LABORATORY

1/M Plot for FE Loading

LCRMs

- Two panels in Control Room
- Now they're digital

Log-Ns

- 2 Instruments
- Compensated ion chambers
- "Intermediate range"
- Depressurized operation

Log-Ns

- Log Scale: S/U to N_F
 - Reads in $N_L = 1\% N_F$
- Calibrate against known^{1×10E-3} NL thermal indication or another measurement

Log-Ns

 Used in power escalation <N_F/3

WRs

- 3 instruments
- Ion chambers
- 12 Ranges
 - 2 per decade
- 3 Plant Protection System (PPS) channels
 - Scram for 2/3 high powers
 - Conservatively high
 - Reduce on thermal power

WRs

- 12 Ranges
 - 2 per decade
- 3 Plant Protection System (PPS) channels
 - min 1 in Range 1 for S/U
 - Range 3 → fewer alarms
 - Scram for 2/3 high powers starts in
 - Conservatively high
 - Reduce on thermal power

NLs

- Linear 0-100% N_F
 - Like Log-N, but not log
 - Like WR, but no ranges
- 3 Plant Protection System (PPS) channels
 - Scram for 2/3 high powers
 - Conservatively high
 - Reduce on thermal power

NLs

- Linear power increase
- Hard to see near 0%

NLs

- Sensitive to changes near $\rm N_{\rm F}$

LPCIS ¹⁶N Core Locations

- 10 ¹⁶N Tubes
 - 4 "inner" at corners
 - Required
 - 4 "outer" outside shims
 - Not required
 - 2 in Center
 - Required

LPCIS

- Threshold Reaction ¹⁶O(n,p)¹⁶N
 - Neutrons >10 MeV
 - LPCIS is Fission Power Only
- WPC includes Decay Heat

LPCIS

- 10 Signals
- 0-100%
- Usually constant w lobe powers

LPCIS

- Matrix Problem
 - 5 Unknown Lobe Powers
 - 10 Known Responses
 - Signal × Multiplier
 = Fission Rate
 - Multiplier compensates for sensitivity, decay in piping
 - -+1 Total Thermal Power
 - Normalization factor
 - = 1 or 10,000
 - Can help LPCIS match WPC
- Least-squares Solution

Assume: if
$$[A] \cdot \vec{x} = \vec{b}$$

then $\vec{x} = (([A]^T \cdot [A])^{-1} \cdot [A]^T) \cdot \vec{b}$

 R_1 _[C₁₁ C₂₁ C₃₁ C₄₁ C₅₁ - R_2 C_{12} C_{22} C_{32} C_{42} C_{52} R_3 C_{13} C_{23} C_{33} C_{43} C_{53} $[P_1]$ R_4 C_{14} C_{24} C_{34} C_{44} C_{54} P_2 c_{15} c_{25} c_{35} c_{45} c_{55} R_5 P_3 X = c_{16} c_{26} c_{36} c_{46} c_{56} R_6 P_4 C_{17} C_{27} C_{37} C_{47} C_{57} R_7 $\lfloor P_5 \rfloor$ c_{18} c_{28} c_{38} c_{48} c_{58} R_8 C_{19} C_{29} C_{39} C_{49} C_{59} R_9 $Lc_{110}c_{210}c_{310}c_{410}c_{510}$ LR₁₀J

- Some coefficients based on optical distance
- Theoretical problems:
 - Signals strongly coupled to immediately adjacent fuel
 - -<0?
 - Magnitude primarily driven by distance
 - Multipliers (vice coefficients) changed when needed
- Pre-2022: Based on short sample of old data

	Lobe Powers					
Detector	NW	NE	С	SW	SE	
Ν	6.002	5.778	-0.036	0	0	
NE	0	56.722	-17.359	0	0	
E	0	5.788	-0.113	0	6.180	
SE	0	0	-17.359	0	55.559	
S	0	0	-0.036	5.525	6.180	
SW	0	0	-17.359	55.013	0	
W	6.002	0	-0.113	5.525	0	
NW	57.471	0	-17.359	0	0	
C/2	3.333	11.904	60.933	-9.156	3.333	
С	3.333	-9.155	60.933	11.904	3.333	
Normalization Factor	10000	10000	10000	10000	10000	

LPCIS Multiplier Changes

- 2 benchmark cases to validate model
- Model gave us appropriate multipliers for expected power divisions

WPC

- WPC "thermal" power is theoretically reliable
 - $Q = \dot{m} \cdot C \cdot \Delta T$
 - Includes fission heat, as LPCIS and NIs
 - + decay heat
 - + pump heat
 - + experiment heat
- 1 inlet temperature
- 4 quad outlet temperatures
- 4 outlet flow rates

	Approximate Core Power Range	Granularity	Safety Function	Inputs
LCRMs	< 1 W	Adjacent Lobe	Required >2cps	#1 (NE) #2 (SW)
Log-N	< 1 W – 2,500 MW	Adjacent Lobe	-	#4 (SE) #5 (NW)
WR	1 W – 1.5N _F	Adjacent Lobe	Scram	Channels A, B, C (SE, NW, NE)
NL	1 MW – 1.5N _F	Adjacent Lobe	Scram	Channels A, B, C (SE, NW, NE)
LPCIS	$1 \text{ MW} - \text{N}_{\text{F}}$	5 Lobes	-	10 N-16 detectors
WPC	3 MW – N _F	Quadrants Core	Scram	Core T _{IN} 4× Quadrant Flow 4× Quadrant T _{OUT}

Idaho National Laboratory

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy. INL is the nation's center for nuclear energy research and development, and also performs research in each of DOE's strategic goal areas: energy, national security, science and the environment.

WWW.INL.GOV