

Advances in Research and Test Reactor Plate Stability for LEU Conversion

Erik Wilson, Cezary Bojanowski, Andrew Hebden, Walid Mohamed, Guanyi Wang, Firat Cetinbas, Dhongik Yoon

Argonne National Laboratory

TRTR 2024 Annual Meeting September 29 – October 3, 2024, Albuquerque, USA

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

U.S. High Performance Research Reactor Designs

- U.S. Reactor Conversion Program converting U.S. High Performance Research Reactors (USHPRR) to high assay low-enriched (19.75%) fuel
 - Massachusetts Institute of Technology Reactor (MITR)
 - Univ. of Missouri Research Reactor (MURR)
 - National Institute of Standards & Technology Reactor (NBSR)
 - Idaho National Laboratory Advanced Test Reactor (ATR)
 - Oak Ridge National Laboratory High Flux Test Reactor (HFIR)
- Preliminary Designs completed for LEU U-10Mo monolithic fuel elements
- HFIR pursuing U_3Si_2 dispersion fuel 4.8-5.3 gU/cc

Reactor Conversions from Highly Enriched Uranium Worldwide Status

- Over 70 reactor conversions to LEU completed
- For remaining reactors, one-third of reactors to be converted are high flux and high utilization
- Each conversion contributes to nonproliferation
 - High-performance reactors refuel multiple times annually
 - EU and USHPRR and other HPRR provide major reductions to civilian use of HEU

USHPRR Conversion Project Progression

- Phased LEU Conversion Strategy
 - Assembly/core design
 - Fabrication development & demonstration
 - Progressive irradiations & assembly hydraulic testing
 - **Scale:** mini-plate, full-size plate, test element
 - Volume: single plates to multiple qualification assemblies
 - Maturity: progress to full product demonstration
- Regulatory review in stages
 - Preliminary UMo report ✓
 - Preliminary Design & Safety Analysis ✓
 - Final Fuel Qualification Report
 - Conversion Analysis with final fabrication & irradiation data
 - \rightarrow Conversion SAR

USHPRR Conversion Project Progression

- Phased LEU Conversion Strategy
 - Assembly/core design
 - Fabrication development & demonstration
 - Progressive irradiations & assembly hydraulic testing
 - Scale: mini-plate, full-size plate, test element
 - Volume: single plates to multiple qualification assemblies
 - Maturity: progress to full product demonstration
- Regulatory review in stages
 - Preliminary UMo report ✓
 - Preliminary Design & Safety Analysis ✓
 - Final Fuel Qualification Report
 - Conversion Analysis with final fabrication & irradiation data
 - \rightarrow Conversion SAR

Procurement Specifications

 \checkmark

Reactor Fuel Element Drawings ✓ (5) 1st Commercial RFP ✓

U.S. High Performance Research Reactor Detailed Design

- LEU Preliminary design completed
 - LEU fuel element designs included some thinner plates
 - Half of the USHPRR plates are thinner

Plate Thickness	LEU	HEU	Plate Type
MURR (1-22)	1.1 mm	1.3 mm	Curved
MITR (1-19)	1.2 mm no fins	1.5 mm, 2 mm w/fins	Flat

- Extended burnups for high-density fuel
- Maintains performance, some power uprates
- Progress on detailed design
 - Single specification for U-10Mo fabrication
 - Fuel element drawings maturation
 - Working on feedback from full element fabrication

🦰 Structural Analysis in Detailed Design 💳

Irradiation Thermo-Mechanical

Fission Density Distribution at EOL, **10²¹fis.cm**⁻³

Side Plate

- Includes structural evaluations of the components modified for LEU conversion
- Plate-level and assembly-level with coolant channels
- Comprehensive
 prediction of effects
 before testing
 - Irradiation tests
 - Flow testing

Plate

Side

• Supports LEU designs, including thinner plates

ZY

Fluid-structure Interaction (FSI)

Fuel plate displacement contour

LEU U-10Mo Fuel Element Design Testing

Irradiation Testing @ATR & BR2

- Irradiate Design Demonstration Elements (DDE) assemblies
- Fuel plates identical to the designs
- Adjusted only to fit into test reactor
- Commercially-fabricated fuel assemblies

Hydraulic Testing @OSU HMFTF

MURR LEU element

NBSR LEU element

MITR LEU element

USHPRR Reactor Design Parameters & U-10Mo Irradiation Testing

- LEU design space well-covered for first planned conversions (pre-commercial fabrication)
 - No failures in fuel testing until plates exceed full LEU burnup
 - Future testing with each reactorspecific fuel plate & element designs → prototypic commercially fabricated LEU tests
- ATR conversion requires testing at higher power density

Irradiation Testing of U-10Mo Monolithic Fuel – Data at Time of First USHPRR Conversion

- USHPRR has completed several stages and has substantial progress towards fuel qualification
- Presently all commercially fabricated plates showing no performance issues to date
- Completed fabricating mini-plate and fullsized plate tests
 - All commercially fabricated
 - Finishing inspections on full-size plates
 - Qualification irradiations have begun
- Next step is full fuel assemblies

LEU Fuel Element Hydraulic Testing

- Conversion Fuel Element hydraulic performance tests to demonstrate that no failure modes are observed in the redesigned USHPRR LEU elements
 - Redesigned USHPRR LEU elements
 - Account for variables in reactor flow conditions
- Combined with Hydraulic Performance evaluation modeling
 - Validated modeling based on plate experiments
- Flow testing of the prototypic commerciallyfabricated LEU conversion elements will observe for significant deformations in the plates and coolant channel changes

Oregon State University (OSU) Hydro-Mechanical Fuel Test Facility

Why LEU Fuel Element Hydraulic Testing?

- The hydro-mechanical stability of the fuel elements should be evaluated
- U.S. NRC guidelines
- Re-design of the LEU fuel elements vs. HEU include, as needed:
 - Change number of plates
 - Remove fins
 - Some plates thinner
 - Coolant channel gap thickness
 - Fuel density
 - Multiple fuel thicknesses per element
 - Element weight
 - Increased flow velocity

MITR LEU element

MURR LEU element

NBSR LEU element

NBSR LEU basket Fuel Element Hydraulic Testing MITR LEU basket MURR LEU basket Hydraulics testing requires several components Test vehicles for LEU fuel elements MIT test vehicle for LEU fuel element • Prototype designed, manufactured & fit tested 2 0 MURR test vehicle • Basket being fabricated 2 NBSR test vehicle _ • Basket being designed Sensors to detect plate behavior in coolant 2 channels during testing Post-test examination for deformations

Sensor Evaluation

Endurance Flow Loop at OSU

LVDT Sensor Test with Flat Plate and Curved Plate

- LVDT detects small deflections of thin plates with desired accuracy
- Experimental and Fluid-Structure analysis shows LVDT does not disturb the characteristics of flow-induced deformation
- Other sensors tested (inductive, laser systems, borescope and machine vision) not selected

Selecting Sensor Positions - MURR

- Depending on the analyzed limiting case for the MURR LEU fuel element, the maximum displacement may occur at a different location along the plate
 - Combs
 - Outer channel gap thickness
- Three LVDT sensor locations are considered adequate

Flow

rection

Prototype MITR Basket and Mock-up Fuel Element Fit Test

Advances in Research and Test Reactor LEU Designs for Conversion

Engineering Design

- Single specification for U-10Mo fuel fabrication completed
- Fuel element drawings maturation
- Next is feedback from full element fabrication

Structural Analysis

- Irradiation thermo-mechanical structural analysis being performed includes irradiation effects
- Hydraulic fluid-structure modeling of plate movements being used to design hydraulic testing

Hydraulic Testing

- Hydraulic test vehicle design, prototypes and fit testing for MITR, MURR and NBSR
- Experiment execution test LEU fuel elements with thinner plates and higher flows, as-needed for conversion
- LVDT sensors selected to detect plate deflection during flow testing of elements
- Pre- and post-test examination for deformations will be performed using channel gap probe

Advances in plate stability and testing support LEU conversion efforts

Acknowledgements

Many thanks to the many experts at each USHPRR Reactor for LEU Conversion team efforts!

Appreciation for collaboration with Lin-wen Hu and other MIT NRL staff on the mock-up element and for test design feedback

