

Evaluating Detection Capabilities of Irradiated Methylammonium Lead Iodide Perovskite Crystals

Coleman Smith Lead Reactor Engineer, Graduate Student Nuclear Engineering & Science Center Texas A&M Engineering Experiment Station; Texas A&M University 3 October 2024

Texas A&M EngineeringExperiment Station

Motivation

Motivation

- Why this material?
 - High interest in field of radiation detection in recent years
 - Cost-effectiveness compared to traditional detector materials like sodium iodide
- Why put it in a nuclear reactor?
 - Ability to detect radiation is only one of several important qualities to consider when selecting a material
 - Lots of exciting results for highly controlled, short-term exposures to radiation sources
 - Very little data on effects of high-fluence radiation exposure for this material
- Ultimately, we want to answer the questions:
 - "Is this a worthwhile material to make detectors from?", and, if so,
 - "What kind of lifetime can we expect from these detectors?"

Motivation (cont.)

Fig. Methylammonium lead iodide lattice structure with possible radiation particle interactions [1]

Motivation (cont.)

- Choice of perovskite, Methylammonium Lead Iodide (MAPbI)
 - Perovskites describe a large family of crystals with general formula ABX₃
 - MAPbI crystals are among the easiest to produce
 - Also has one of the highest theoretical charge collection efficiencies within lead halide group (compared to other candidates like Br) [1]-[3]

Experimental Setup

Experimental Setup – Crystal Production

- Crystal purity is vital to charge collection and resistance to radiation-induced damage
 - Production will be done using highest possible purity reagents and precipitation reaction parameters will be continuously monitored
- Production will be divided into 3 batches of 10 crystals
 - First batch control batch; no prior radiation exposure
 - Second batch to be irradiated at 900kW for 5 minutes
 - Third batch to be irradiated at 900kW for 1 hour

Experimental Setup – Crystal Production (cont.)

- General reaction for production:
 - $CH_3NH_{3(aq)} + 3HI_{(aq)} + PbCH_3COO_{(aq)} \rightarrow CH_3NH_3PbI_{3(s)}$
- Under optimal conditions, crystals can be grown in a lab environment on the order of 10-50 mg in mass
 - Reaction progresses slowly (~2 weeks to synthesize fullygrown crystal)
 - Faster processes exist, but precipitation reaction allows for minimization of oxidation by atmosphere during growth

Experimental Setup – Photocurrent Measurement

- Crystals will be arranged in setup to obtain several sets of photocurrent data
 - Crystals will be soldered to a low natural resistance wire, such as gold wire, and placed in parallel with a picoammeter
 - Wired crystals will be encapsulated and placed in front of a ¹³⁷Cs source to obtain count data
 - Calibrated G-M detector will be placed behind wired crystal to obtain attenuation data

Experimental Setup – Photocurrent Measurement (cont.)

Texas A&M Engineering Experiment Station

Fig. (a) Example photocurrent measurement experimental setup (b) Picture of MAPbl crystal with gold wire soldering (c-e) sample data collected for xray source irradiation [1]

Experimental Setup – In-core Irradiation

- Crystals will be arranged in an evenly-spaced, radial fashion in sample tubes in the highest flux region of the tube
 - Sample tube will be loaded onto the "A6" Position of the reactor grid plate of the Nuclear Science Center Reactor (NSCR)
 - Within sample tube, sample can loaded with batch of crystals will be placed in highest-flux position inside the tube

Fig. Grid plate and core layout of NSCR [4]

Experiment Simulation Results

Sample Activity Estimates

- Radiological concerns for irradiating this compound (CH₃NH₃Pbl₃):
 - \circ Lead
 - ²⁰⁹Pb
 - 3.3-hour half-life; 0.6 MeV beta decay radiation [5]
 - Precursor ²⁰⁸Pb makes up ~50% of all natural lead samples (can vary from sample to sample)
 - \circ lodine
 - 128
 - 25-minute half-life; 2.1 MeV beta decay radiation [5]

Sample Activity Estimates (cont.)

- Radiological concerns for irradiating this compound (CH₃NH₃Pbl₃):
 - All other feasible radioisotopes have negligibly low:
 - Parent isotope natural abundance
 - Neutron absorption cross sections
 - Decay constants
 - Branch ratios
 - Some combination of the above

Sample Activity Estimates (cont.)

- Isotopic production estimated and inventory tabulated over time using in-house developed Python executable script
 - Program uses NumPy's *expm* method to solve Bateman equation over a "run time" activation time series immediately followed by a "decay time" wait period
 - Library of constants such as half-life and thermal absorption cross sections taken from IAEA Chart of Nuclides and ENDF-BVII.1
 - Library of flux data for each sample position generated using gold foil and cadmium-covered gold foil data

Sample Activity Estimates (cont.)

Fig. GUI display for in-house developed code for estimating sample activities for isotope production

Material data file:	Elements.dat ∨	Core Position:	A6	~
Material/element	Lead ~	Thermal flux type:	C Average	Peak
lsotope of interest	Pb-209 ~			
Activity of sample	0.13254603434717716	mCi ~		
Mass of sample	168	mg ~		
Decay time	1	hr ~		
Run time	1	hr ~		
Calculate	Print	Advanced	Clear Ent	tries Quit

Sample Activity Estimates – ²⁰⁹Pb

	Activity (mCi) after a decay time of:			
	1 minute	1 hour	1 day	
5-minute Run	0.015	0.012	8.79E-05	
1-hour Run	0.164	0.132	9.58E-04	

- ²⁰⁹Pb has a larger cross section, but is also longer-lived than
 ¹²⁸I once activated
- Radioactivity won't fully diminish until 1 day of decay in storage
 - However low enough that a faster extraction could be reasonably achieved with reasonable time, distance, and shielding

Example Plotted Results – ²⁰⁹Pb

Texas A&M Engineering Experiment Station

Fig. ²⁰⁹Pb production and decay curve for a 1-hour run of 500mg of MAPbI followed by 1 day of decay in inventory

TRTR Conference 2024

Sample Activity Estimates – ¹²⁸

	Activity (mCi) after a decay time of:			
	1 minute	1 hour	1 day	
5-minute Run	240.307	46.776	1.11E-15	
1-hour Run	1505.122	292.975	6.96E-15	

- ¹²⁸I has a much shorter half-life and higher precursor capture cross section
- ¹²⁷I also has a higher atom density in MAPbI
- This makes immediate extraction much less feasible
 - However, the 25-minute half-life of ¹²⁸I means that the isotope has decayed to a negligible amount after ~5 hours

Example Plotted Results – ¹²⁸

Texas A&M Engineering Experiment Station

Isotopic inventories plotted against time

Fig. ¹²⁸I production and decay curve for a 1-hour run of 500mg of MAPbI followed by 1 day of decay in inventory

TRTR Conference 2024

Core Reactivity Change Simulation

- Evaluation of potential changes of core physics prior to running is essential to any experiment performed with a research reactor
 - Tech Spec Requirements at NSCR (T.S. 3.6.1)
 - Absolute value of experiment activity shall be < \$1.00 [6]
 - Evaluation performed using a modification of an existing MCNP criticality search for the NSCR core at cold and hot critical

Core Reactivity Change Simulation (cont.)

- 3 cases evaluated in MCNP to establish bounds
 - 1. NSCR at cold clean critical; no long tubes loaded in any experimental positions
 - Sample tube loaded in A6 position with cylinder equal in density (~4.1 g/cc) to batch of crystals [7]
 - 3. Sample tube loaded in A6 position with cylinder equal to 2 times density of batch of crystals

Core Reactivity Change Simulation - Results (cont.)

Texas A&M Engineering Experiment Station

Trial	Final k _{eff}	ρ (\$/100)	Δρ (\$/100)
No Sample Tube	0.99208	-1.140461023	0
Loaded Sample Tube	1.00673	0.955001412	2.095462
Loaded; Double Density	1.00612	0.868967632	2.009429

• Conclusion: Sample loaded into core will be well under T.S. limits, even with sample tube loaded beyond expected quantity

Future Work

- Higher precision modeling
 - Run fully modeled samples using ORIGEN for better isotopic buildup estimate; Use full geometry model for MCNP runs
- Design photocurrent measurement circuitry
- Gamma source irradiation setup
- MAPbl crystal production and sample preparation
- Low-power physics testing with setup
 - After low power testing, further MCNP simulations with hot core conditions will also be run prior to testing

- B. Náfrádi, et. al. "Methylammonium Lead Iodide for Efficient X-ray Energy Conversion," The Journal of Physical Chemistry C 2015 119 (45), 25204-25208 DOI: 10.1021/acs.jpcc.5b07876 2019
- S.W. Yang et. al. "Evaluation of radiation detection sensors and quality assurance relative dosimeters fabricated using methylammonium lead iodide for brachytherapy," 2024 JINST 19 P09036 2024
- 3. G.F. Knoll "Radiation Detection and Measurement," 4th ed. John Wiley & Sons, Inc. NJ 2010

References (cont.)

- 4. Safety Analysis Report, Nuclear Science Center Reactor (License Number R-83), TEES Nuclear Science Center, May 2011
- 5. Livechart Table of Nuclides Nuclear Structure and Decay Data, IAEA Nuclear Data Section, 2024, wwwnds.iaea.org/relnsd/vcharthtml/VChartHTML.html.
- Technical Specifications and Bases Amendment 19, Nuclear Science Center Reactor (License Number R-83), TEES Nuclear Science Center, Jul. 2021
- C. Smith, "Feasibility of High-Frequency Radiation for Electrical Energy Generation in Fusion Devices," B.S. thesis, Dept. Nuclear Engineering, Pennsylvania State Univ., State College, PA, May 2023

Texas A&M Engineering Experiment Station

Questions?