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• Massachusetts Institute of Technology Research Reactor (MITR-II) 
-6 MWth light-water, materials testing reactor
-Operating since 1976

Backgrounder on Current MITR-II

2



NSE
Nuclear Science and Engineering 

• Aging systems affecting reactor availability

• Legacy MITR-I design constrains use of space and reactor access

• Advanced reactor market has increased need for irradiation facilities

• Current long term planning includes fuel change (LEU Conversion)

Motivation for Redesign
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MITR-I (1958-1974) MITR-II (1976-Present) MITR-III
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1)Maintain high performance and neutron 
flux

2) Increase in-core irradiation volume

3)Streamline routine evolutions

4)Boost reactor availability

5)Add versatility to ex-core facilities

Design Goals
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Constraints
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• Fuel enrichment <19.75 wt% U235
• Fixed site and physical containment

Power 
<10 MWth

In-Core experiment 
area < 16 in2

MITR-III 100 m
EPZ

Regulatory Limits for 
Research Reactors
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Proposed Design Pathways
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Al clad U-10Mo

H2O cooled and moderated

D2O and graphite reflectors

Leverage USHPRR work

Al or Zr clad UO2 rods

H2O cooled and moderated

Multiple reflector options

Existing industry support & 
infrastructure

Short upgrade 
timeline

Multiple fuel options

H2O cooled and moderated

Multiple reflector options

Replacement of legacy systems

In-core performance Utilize commercial 
operating experience
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Fuel Type Screening
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Fuel U235 Density 
[g/cc] Power [MW] Normalized 

Volume Est Fuel Maturity

TRISO 2.11 (kernel)
0.26 (particle) 10 1.18

9.55
Medium (AGR)/

Low (FCM)
UZrHx

(TRIGA 
45/20)

<1.04 10 2.39 High

UO2 1.86 10 1.34 Medium/High

U-10Mo 3.02 10 0.82 Low

*U-7Mo 1.78 10 1.39 Low

*U3Si2
(5.3 g/cc) 1.05 10 2.37 Low/Medium

MITR-II (UAlx) 1.49 6.0 1.0 High
*Dispersion form factor, aluminum matrix

!"#$% ≈ ''(
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Design Starting Point: Flat Plate Geometry
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Fuel 
H2O Moderator/Coolant

Al6061 Cladding

35.08 mm

42 mm
1 m

m

1.5 m
m

45 m
m

45 mm

• 52 fuel elements
• 14 plates per element
• 36 cm core diameter, 60 cm height
• 24 peripheral control rods
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Reflector Screening
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Burnup Beyond Reference Case
[MWD/kgU]

H2O 0

Concrete 0.6

D2O 8.5

MgO 13

Al2O3 10

Beryllium 20.5
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Core Averaged Flux
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Thermal (<1 eV) Fast ( >100 keV)

2.2 x 1013 n/cm2/s 1.6 x 1014 n/cm2/s
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• Initial analysis supportive of MITR-III design goals

- Increased irradiation volume

-High flux and reactor availability

• Even with site and fuel constraints, performance standards can 
likely be preserved or exceeded

Key Takeaways

11

This work was funded under DOE Idaho Operations Office Contract DE-AC07-05ID14517.
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Backup Slides
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Design 1: Economical
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Parameter Suggested Value Support Challenge

Fuel Meat Al-clad U-10Mo 
(19.75 wt%)

Fuel qualification process underway
Very high uranium density

Fabrication complexity
Neutron absorption losses in molybdenum

Element Form Monolithic, plates Existing analysis/model support;
Mini-fuel testing at ATR

Geometry constraints of existing 
structures and shielding

Moderator H2O Compact, high MTC Absorption losses; liquid

Coolant H2O
Inexpensive; Suited for low temperature 

operation
Low boiling temperature for transient 

analysis

Reflector D2O
Existing inventory; Familiarity with 
hazards and handling precautions

Tritium hazard; Expensive to bleed and 
feed

Priority: Shorten timeline of reactor upgrade
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Design 2: Performance
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Parameter Suggested Value Support Challenge

Fuel Meat
Dispersion or TRISO particle

Al or Zr metallic matrix
Great heat transfer and FP 

retention
Fuels not qualified

Element Form Plate type, un-finned High heat transfer, compact Fabrication feasibility

Moderator H2O Compact, high MTC Absorption losses; liquid

Coolant H2O
Inexpensive; Suited for low 

temperature operation
Low boiling temperature for 

transient analysis

Reflector

D2O
Existing inventory; Familiarity with 
hazards and handling precautions

Tritium hazard; Expensive to bleed 
and feed

Beryllium High neutron reflection; Toxicity; Limited lifetime

MgO
Non-toxic; stable Limited testing data

Al2O3

Priority: Remove legacy systems to optimize for experiments
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Design 3: Commercial
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Parameter Suggested Value Support Challenge

Fuel Meat
UO2

(<20% enriched)
Operating data and industry support Limited form factor

Element Form Pellet stack, Al/Zr clad Simple to model; available correlations
Decrease in heat transfer efficiency; no 

existing fabrication

Moderator H2O Compact, high MTC Absorption losses; liquid

Coolant H2O
Inexpensive; Suited for low 

temperature operation
Low boiling temperature for 

transient analysis

Reflector

D2O
Existing inventory; Familiarity with 
hazards and handling precautions

Tritium hazard; Expensive to bleed 
and feed

Beryllium High neutron reflection; Toxicity; Limited lifetime

MgO
Non-toxic; stable Limited testing data

Al2O3

Priority: Take advantage of power reactor data
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