NSE Nuclear Science and Engineering

science : systems : society

1117

Preliminary Design Considerations for MITR-III

Sara Hauptman¹

J. Buongiorno¹, A. Craft², K. Shirvan¹, L. Hu¹, G. Kohse¹, L. Snead¹, B. Forget¹

¹ Massachusetts Institute of Technology ² Idaho National Laboratory

October 4th, 2024

Backgrounder on Current MITR-II

- Massachusetts Institute of Technology Research Reactor (MITR-II)
 - 6 MW_{th} light-water, materials testing reactor
 - Operating since 1976

Motivation for Redesign

- Aging systems affecting reactor availability
- Legacy MITR-I design constrains use of space and reactor access
- Advanced reactor market has increased need for irradiation facilities
- Current long term planning includes fuel change (LEU Conversion)

Design Goals

- 1) Maintain high performance and neutron flux
- 2) Increase in-core irradiation volume
- 3) Streamline routine evolutions
- 4) Boost reactor availability
- 5) Add versatility to ex-core facilities

Constraints

 Fixed site and physical containment **Regulatory Limits for Research Reactors** SE 062 Fuwer 100 m MITR-III 10 MW_{th} **EPZ** Kule In-Core experiment area < 16 in²

• Fuel enrichment <19.75 wt% U235

Proposed Design Pathways

H₂O cooled and moderated D₂O and graphite reflectors Leverage USHPRR work

Multiple fuel options H₂O cooled and moderated Multiple reflector options Replacement of legacy systems

Utilize commercial operating experience

Al or Zr clad UO₂ rods H₂O cooled and moderated *Multiple reflector options Existing industry support & infrastructure*

NSE Nuclear Science and Engineering

Fuel Type Screening

	Fuel	U235 Density [g/cc]	Power [MW]	Normalized Volume Est	Fuel Maturity
$Power \approx RR_{f}$ $RR_{f} = V\sigma_{f}N_{235}\phi$ $V \propto \frac{Power}{\phi * \rho_{235}}$	TRISO	2.11 (kernel) 0.26 (particle)	10	1.18 9.55	Medium (AGR)/ Low (FCM)
	UZrH _x (TRIGA 45/20)	<1.04	10	2.39	High
	UO ₂	1.86	10	1.34	Medium/High
	U-10Mo	3.02	10	0.82	Low
	*U-7Mo	1.78	10	1.39	Low
	*U ₃ Si ₂ (5.3 g/cc)	1.05	10	2.37	Low/Medium
	MITR-II (UAI _x) *Dispersion form factor	1.49 or, aluminum matrix	6.0	1.0	High

Design Starting Point: Flat Plate Geometry

Reflector Screening

NSE Nuclear Science and Engineering

Core Averaged Flux

NSE Nuclear Science and Engineering

Key Takeaways

- Initial analysis supportive of MITR-III design goals
 - -Increased irradiation volume
 - -High flux and reactor availability
- Even with site and fuel constraints, performance standards can likely be preserved or exceeded

This work was funded under DOE Idaho Operations Office Contract DE-AC07-05ID14517.

Backup Slides

Design 1: Economical

Priority: Shorten timeline of reactor upgrade

Parameter	Suggested Value	Support	Challenge
Fuel Meat	Al-clad U-10Mo (19.75 wt%)	Fuel qualification process underway Very high uranium density	Fabrication complexity Neutron absorption losses in molybdenum
Element Form	Monolithic, plates	Existing analysis/model support; Mini-fuel testing at ATR	Geometry constraints of existing structures and shielding
Moderator	H ₂ O	Compact, high MTC	Absorption losses; liquid
Coolant	H ₂ O	Inexpensive; Suited for low temperature operation	Low boiling temperature for transient analysis
Reflector	D ₂ O	Existing inventory; Familiarity with hazards and handling precautions	Tritium hazard; Expensive to bleed and feed

Design 2: Performance

Priority: Remove legacy systems to optimize for experiments

Parameter	Suggested Value	Support	Challenge
Fuel Meat	Dispersion or TRISO particle Al or Zr metallic matrix	Great heat transfer and FP retention	Fuels not qualified
Element Form	Plate type, un-finned	High heat transfer, compact	Fabrication feasibility
Moderator	H ₂ O	Compact, high MTC	Absorption losses; liquid
Coolant	H₂O	Inexpensive; Suited for low temperature operation	Low boiling temperature for transient analysis
Reflector	D ₂ O	Existing inventory; Familiarity with hazards and handling precautions	Tritium hazard; Expensive to bleed and feed
	Beryllium	High neutron reflection;	Toxicity; Limited lifetime
	MgO	Non tovia stable	Limited testing data
	Al ₂ O ₃	INON-TOXIC; STADIE	

Design 3: Commercial

Priority: Take advantage of power reactor data

Parameter	Suggested Value	Support	Challenge
Fuel Meat	UO ₂ (<20% enriched)	Operating data and industry support	Limited form factor
Element Form	Pellet stack, Al/Zr clad	Simple to model; available correlations	Decrease in heat transfer efficiency; no existing fabrication
Moderator	H ₂ O	Compact, high MTC	Absorption losses; liquid
Coolant	H ₂ O	Inexpensive; Suited for low temperature operation	Low boiling temperature for transient analysis
Reflector	D ₂ O	Existing inventory; Familiarity with hazards and handling precautions	Tritium hazard; Expensive to bleed and feed
	Beryllium	High neutron reflection;	Toxicity; Limited lifetime
	MgO	Non tovia stable	Limited testing data
	Al ₂ O ₃	inon-loxic; stadie	

Acknowledgement and References

This work was funded under DOE Idaho Operations Office Contract DE-AC07-05ID14517.

1. P. GRAY, "Twentieth Anniversary Observance of the MIT Research Reactor and the Completion of the MITR-II Modification," [Speaking Notes], Cambridge, MA (July 27, 1978).

2. G. ALLEN, L. CLARK, J. GOSNELL, and D. LANNING, "The Reactor Engineering of the MITR-II Construction and Startup," Massachusetts Institute of Technology Department of Nuclear Science and Engineering, MITNE-186, Jun. 1976.

3. NRL STAFF, "Reactor Systems Manual", Chapter 8, SR# 2020-14H, (Mar 6, 2021).

4. "Technical Specifications for the MIT Research Reactor (MITR-II)," Docket No. 50-020, Rev. 6, MIT Nuclear Reactor Laboratory, Cambridge, MA (2010).

5. K. SUN, L. HU, E. WILSON, A. BERGERON, T. HELTEMES, "Low Enriched Uranium (LEU) Conversion Preliminary Safety Analysis Report for the MIT Research Reactor (MITR)", MIT-NRL-18-01, Rev. 2, October 2018.

6. K. SUN, A. DAVE, et. al., "Transitional cores and fuel cycle analyses in support of MIT reactor low enriched uranium fuel conversion," Progress in Nuclear Energy, 119, 103171 (2020).

7. L. HU, K. SUN, A. DAVE, E. BLOCK, and J. FOSTER, "MITR Startup Plan for Initial LEU Fueled Core", MIT-NRL-19-02, Rev. 0, July 2019.

8. J. KIM, Y, TAHK, et. al., "On-going Status of KJRR Fuel (U-7Mo) Qualification", Idaho National Laboratory, INL/CON-17-41243, (March 2017).

9. D. CHANDLER, B. R. BETZLER, J. W. BAE, D. H. COOK, G. ILAS, "CONCEPTUAL FUEL ELEMENT DESIGN CANDIDATES FOR CONVERSION OF HIGH FLUX ISOTOPE REACTOR WITH LOW-ENRICHED URANIUM SILICIDE DISPERSION FUEL*," *EPJ Web Conf.*, vol. 247, p. 08017, 2021, doi: <u>10.1051/epjconf/202124708017</u>.

