

PULSTAR Utilization and Irradiation Testing Capabilities for Advanced Reactor Research

Austin Wells, Ayman I. Hawari

Nuclear Reactor Program Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA

> 2024 TRTR Annual Meeting September 29th – October 3rd, 2024

UNC System Board of Governors Center

Education / Training

NRP

- Provide a hands-on understanding of the physics and operations of nuclear reactors to the next generation of nuclear engineers
- Serve as a multi-disciplinary education center in the area of radiation physics applications
- Provide training in support of nuclear power development

Scientific applications and research

- Develop state-of-the-art facilities for understanding and applying the principles of radiation interaction with matter
 - Includes in-pool and ex-pool studies

Outreach, extension and service

Support the national infrastructure through the use of nuclear methods in various aspects including medical and industrial

PULSTAR Reactor

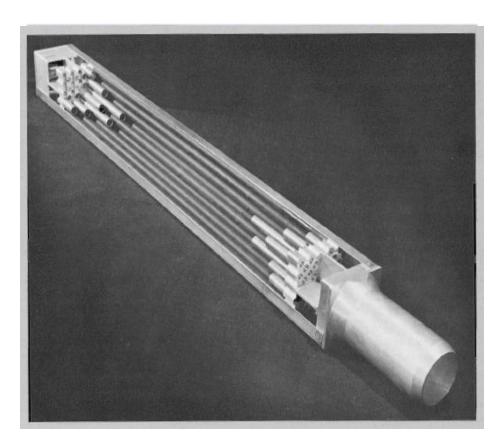
- 1-MW power
 - Upgrade to 2-MW
- Open pool/tank
- Light water moderated and cooled

Critical 1972

NRP NUCLEAR REACTOR PROGRAM

PULSTAR Reactor

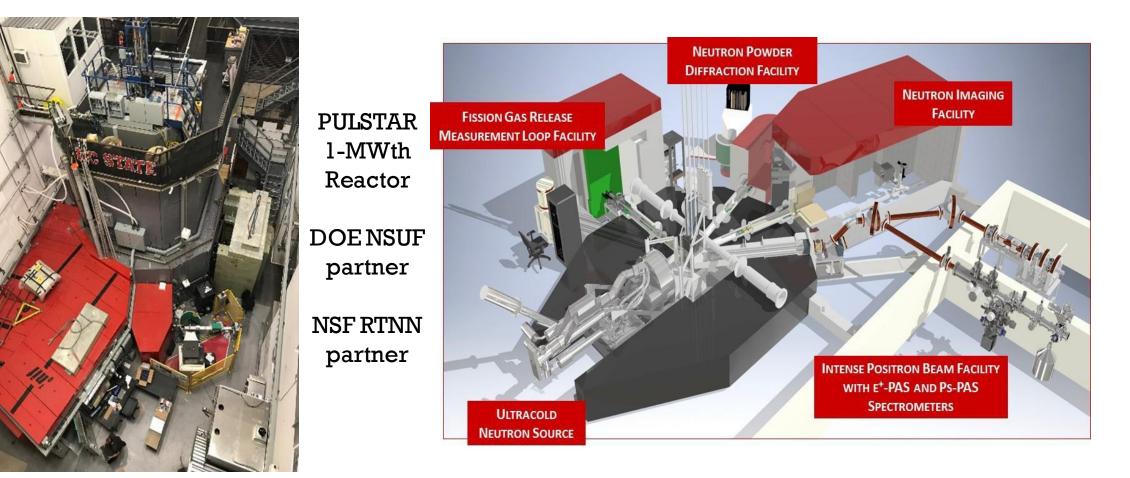
- 1-MW power
 - Upgrade to 2-MW
- Open pool/tank
- Light water moderated and cooled
- **5** x 5 array of fuel assemblies
- **5** x 5 array of pins


Critical 1972

PULSTAR Reactor

- 1-MW power
 - Upgrade to 2-MW
- Open pool/tank
- Light water moderated and cooled
- **5** x 5 array of fuel assemblies
- **5** x 5 array of pins
- □ Sintered UO₂ pellets
- 4% and 6% enriched

Critical 1972



Nuclear Reactor Program

UNC System Board of Governors Center

\$60M investment in infrastructure

NRP NUCLEAR REACTOR PROGRAM

Advanced Reactor Research

Advanced Testing Environments

- Fuel Irradiation
- Elevated Temperatures
- Molten Salts
- Advanced Analytical Techniques
 - Fission Gas Release and Assay
 - Laser Induced Breakdown Spectroscopy
- **PIE Capabilities**
 - Positron Annihilation Lifetime Spectroscopy
 - Neutron Powder Diffraction
 - Gamma Spectroscopy and Spectrometry
 - Hot Cell

Fuel Irradiation

Proposed Advanced Reactor Fuels:

- Nitrides
- Carbides
 - TRISO
- Fueled Molten Salt (liquid)
- Understudied when compared to traditional materials (eg. UO2)

License Amendment 20 (2023)

- Fission rates up to 2E9 fissions/s
- Allows for vented fuel experiments

Example – Fission Gas Release

Impetus

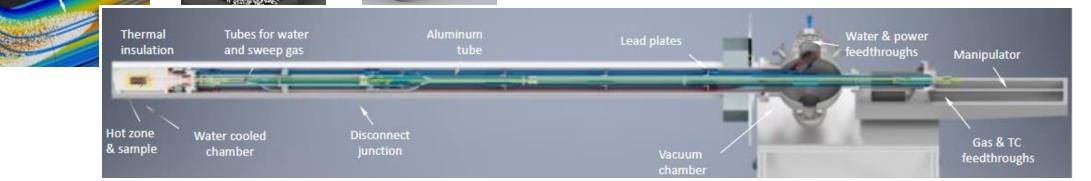
 Intergranular fission gas transport phenomena

Flow streamlines of Helium gas

Color-coded flow speed or

One layer of fuel particles & color-coded temperature

Helium gas


Fission products Represented by white dots

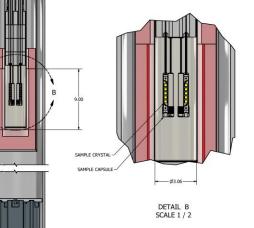
- Measure release of FP gases from bare fuel particles
- Improve understanding of FP impact on fuel performance

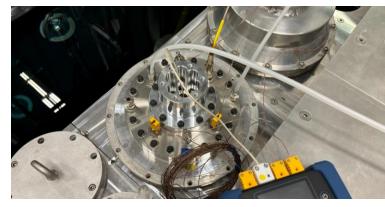
Facility Design

- Material agnostic; can test many different fuel designs
- Sample temperature controlled up to 1000 C

Temperature Controlled Environments

Core

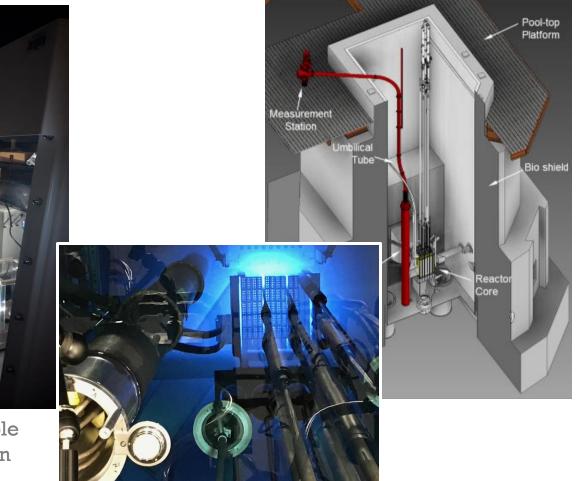

Materials properties change depending on temperature


- Physical and crystallographic phase transitions
- Conductivity
- Microstructure and chemical stability
- Radiation effects on materials can be highly temperature dependent
 - Interaction cross sections
 - Defect mobility

Sensor and Instrument Performance Characterization

Near-core irradiation facilities

- IE12/2E11 nv (Th/F)
- IE7 R/hr gamma
- Up to 800 C


NC STATE

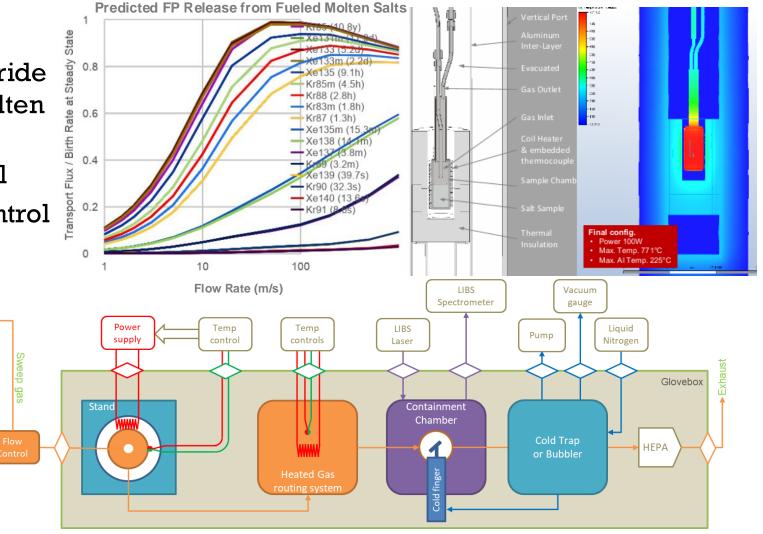
Molten Salt Environments

Complex Environment

- Intense radiation fields
- Uncommon corrosion environment (ideal conditions are anerobic)
- Elevated temperatures
- Building test MSRs is high-risk
 - How to emulate environment using research reactors?
- Near-Core mixed radiation fields

Glovebox labs for sample prep and non-irradiation studies

Standpipe installed adjacent to reactor core

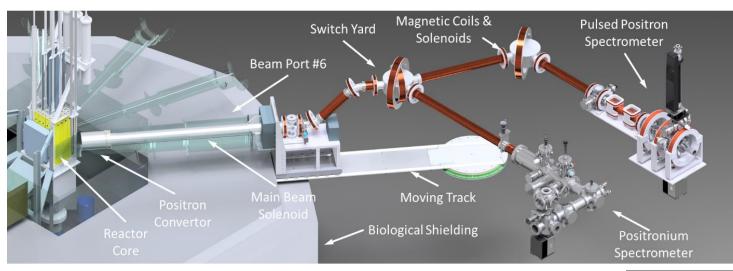

Example – Molten Salt Gas Sweep

Facility Design

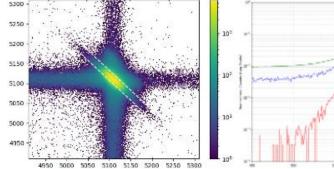
- Release and transport of fluoride volatiles and tritium from molten salts
- Regional temperature control
- Inert gas sweep with flow control and measuring

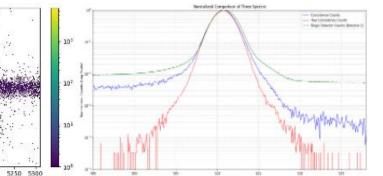
Helium tank

- Compatibility with various analytical systems
 - Gamma spectroscopy
 - LIB spectroscopy
 - Tritium monitoring

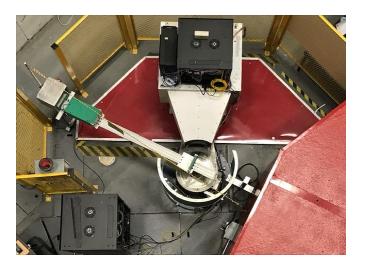







Intense Positron Beam Facility

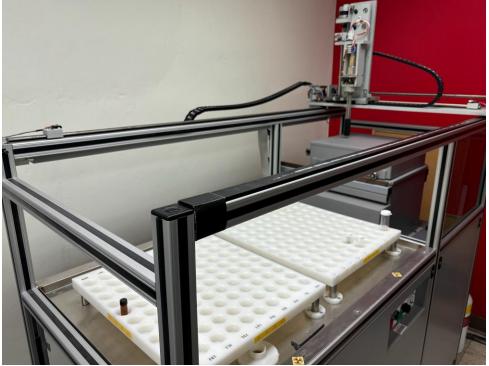
- Greater than 10^8 e +/s
- Defect analysis on soft matter, semiconductors, metals, etc.
- PALS and CDBS analysis



Neutron Scattering – Powder Diffraction

NPDF Facility Upgrades – Dual Purpose:

- Diffraction Measurements:
 - 15 New Position Encoding Modules (PEM) improved diffraction measurement resolution $\Delta d/d$ of 2.9x10⁻³ for ϕ 3mm holder
- Transmission Measurement Capabilities:
- Monochromator capable of providing beam wavelengths of 1.085 Å, 1.180 Å, 1.479 Å, and 1.762 Å
- Can install sample heaters or cryogenic apparatus to control temperature


Additional Capabilities

PULSTAR Hot Cell Facility

- Equivalent 6-Inch Lead Shielding
- Post-irradiation material handling and processing

Gamma Spec. and NAA

- Gamma spec. labs with special-purpose measurement stations (eg. PN transfer for shortlived species)
- QMS Based on ISO/IEC 17025 & ISO 9001

Summary

DULSTAR Reactor

- Mission
- Reactor and Facilities

Advanced Reactor Research

- Fueled Irradiation Experiments
- Temperature Controlled Facilities
- Molten Salt Reactor Environments
- **PIE Capabilities**
 - Positron Beam
 - Neutron Powder Diffraction
 - Gamma Spectroscopy and Spectrometry
 - Hot Cell

Thank You

