

USGS TRIGA Reactor Fuel Configurations and History

TRTR 2024 Conference October 3rd, 2024 Presented by: Jonathan Wallick, Reactor Director

<u>Overview</u>

- Fuel Inspection August 2023
 - Primary Issues Identified and Reports
- Length Determinations
 - Fuel Sources
 - Categories of Documentation
 - Building a Timeline
- Internal Configurations
 - Samarium Discs
 - Molybdenum Discs
 - Zirconium Rods
- Results
 - SAR Updates
 - Other Actions

Everybody likes new fuel

Fuel Inspection 2023

- First inspection since April 2018
 - Used underwater camera
 - Seven elements out of place
 - FEMT giving apparent incorrect measurements.
 - Aluminum oxide layer observed on all aluminum-clad elements
- Halted inspection and suspended operations for a full investigation.
 - Four reports, 76 pages total, 31 corrective actions identified.
 - Root cause and safety culture analysis performed.

FEMT Usage Findings

 Review of all measurements conducted with FEMT.

FEMT Configuration	Percent Invalid
Setup A	0%
Setup B	6%
Setup C	50%
Setup D	0%
Setup E	80%
Setup F	67%

Fuel Pathways to GSTR

Timeline Assumptions

- 1. Fuel must exist to be installed in a core!
- 2. Drawings must exist to make fuel.*
- 3. Serial numbers made in order, no skips, no backsies.**
- 4. Highest serial number in a delivery considered to be final produced for batch.
- 5. For GA Prototype Mark I, estimated 70 elements needed for core, made 30 days before commissioning.***
- 6. QA checks require 30 days after manufacture.***
- 7. Once drawing is approved, only drawing used.

Timeline Documents

- 1. Material Transfer Form for the Veterans Administration Hospital, Omaha, Nebraska TRIGA Reactor, dated 1959-06-26.
- 2. ICP/INT-05-817 Idaho Cleanup Project TRIGA Fuel Summary Report, dated 2005-03.
- 3. IAEA-AEC-Finland Supply Agreements, Project Agreement, Correspondence, and Fuel Data/Shipping Records for the FiR1 Finnish Reactor, multiple dates.
- 4. ORNL/SUB-86-22047/2 / GA-C18542 Characterization of TRIGA fuel by N. Tomsio, dated 1986-10.
- 5. CCN 310470-PJB-39-10 Approval of the General Atomics Fuel and Packaging RSD-7-8-10-Attachment, dated 2010-07-01.
- 6. USGS original and subsequent fuel receipt documents for fuel purchased from General Atomics, multiple dates.
- 7. General Atomics quality assurance documents for elements 11842 and 11843, received from University of Texas at Austin on 2015-05-27, dated 2010-09-09.
- 8. General Atomics document GA-471: Technical Foundations of TRIGA, dated 1958-08-27.
- 9. General Atomics document GA-7259: TRIGA A High Performance Steady State/Pulsing Reactor, dated 1966-09.
- 10.General Atomics document GA-1695 (Revision 4): TRIGA Mark I and Advanced TRIGA Prototype Reactors and Supporting Facilities, dated 1963-08.

Timeline Elements

Corial Number	Estimated Date	Avg.			
Serial Number	Fabricated	Days/Element			
70	1958-04-03	0			
1010	1959-05-27	0.45			
1763	1960-01-26	0.32			
1851	1960-07-17	1.97			
1923	1960-07-30	0.18			
2019	1960-12-11	1.40			
2027	1961-01-15	4.38			
2122	1961-05-09	1.20			
2366	1961-10-30	0.71			
2575	1961-12-02	0.16			
3004	1963-02-14	1.02			
3172	1964-03-02	2.27			
3299	1964-04-06	0.28			
3400	1964-08-19	1.34			
3403	1964-10-21	21.00			
3515	1965-01-02	0.65			
3859	1965-04-10	0.28			
3924	1965-12-20	3.91			
4312	1966-10-19	0.78			
5016	1967-10-09	0.50			
5029	1967-12-04	4.31			
5199	1968-06-09	1.11			

5762	1968-11-06	0.27
5768	1968-11-17	1.83
5886	1969-02-10	0.72
5980	1969-08-23	2.06
6575	1970-10-12	0.70
6594	1970-10-24	0.63
6628	1970-12-21	1.71
6843	1971-08-02	1.04
6955	1971-11-16	0.95
7201	1972-06-13	0.85
7933	1974-11-03	1.19
9304	1979-11-05	1.33
9474	1980-10-19	2.05
9534	1981-07-04	4.30
9843	1983-10-15	2.70
10038	1985-03-19	2.67
10078	1987-06-06	20.23
10173	1989-06-05	7.68
10207	1990-06-27	11.38
10213	1991-03-31	46.17
10252	1991-06-30	2.33
10807	1995-07-23	2.67
11843	2010-08-10	5.31

Table 1 – Serial Numbers, Estimated Dates, and Production Time

Timeline Graphic

Fuel Internal Configurations

- Drawings and INL Report:
 - Samarium discs in stainless steel-clad before 1964.
 - Molybdenum discs in all fuel after 1971.
 - Zirconium center rods not added until 1963-05.
- USGS SAR:
 - Samarium discs specifically excluded from stainless.
 - Molybdenum discs are not in any type.
 - Zirconium rods are in all fuel elements.

Samarium Discs

- INL Report Table / footnotes:
 - 1c: Removal of the samarium (Sm) disc from drawing T0S210D130 (original aluminumclad standard elements) as of revision H on 1964-08-17,
 - 2b: Removal of the Sm disc from drawing T0S210D210 (original stainless steel-clad standard elements) as of revision F on 1964-04-10.

- GA Drawing Revision Notes:
 - 1964-08-17:
 - T0S210D130 Rev H, T0S210D160 Rev D, and T0S210D210 Rev E all state:
 - Rev. note 5 measured length 25.125 was from top weld; removed item 9; added "stake (4) places
 - 1964-11-06:
 - 130 J, 160 E, 170 E, and 210 F all state:
 - Removed item (9/8/16/8), respectively.
 - 210 F added item
 - No revisions on **1964-04-10**.

Samarium Discs

- What is the impact now?
- Sm disc end of life set at 1% of Sm-149 original value.
- Calculations show element U-235 burnup to 7% achieves Sm EOL.
- Agrees with GA-471 (Technical Foundations of TRIGA, 1958), and general understanding on loaded burnable poisons.
- Effectively every element on site with Sm discs is beyond 7% burnup => no current effect.

Molybdenum Discs

- Used to prevent potential fusing of graphite to fuel meat.
- Included in all variants starting 1971-04-15 with Revision N.
- USGS SAR explicitly excluded moly discs from all fuel types.
- Given effectively inert function on neutronics and other performance, no major issue, only regulatory / documentation.

Zirconium Rods (Al Clad)

- INL Report Table 7 footnote 2a:
 - T0S210D210 (original stainless steel-clad standard elements) Rev. B added axial zirconium rods as of 1963-05-28.
- Image from GA-471 (1958-08-27) shown of aluminum-clad element construction, but no drawings show hole until 1964.
- Always 1.0 H/Zr ratio, to common understanding and documentation.

SAFETY OF THE REACTOR

Chemical Stability of the Fuel Elements

The fuel elements are clad in 0.030 in. of high-purity aluminum (type 6061). It is well known that this material suffers very slight corrosion

Zirconium Rods (SS Clad)

- If H/Zr ratio is 1.0, then temp limit of 530° C applies to early SS-clad.
- GA-471 describes many experiments of up to 2.0 H/Zr without central hole.
- Evidence given by GA-7259 (1966-09).
- Supported by GA-1695 (1963-08), describing ATPR's fuel ratio of 1.7

 Stainless steel clad U-ZrH_{1.7} fuel elements (steadystate/pulsing). By increasing the hydrogen content by
70%, the phase transition is eliminated and the fuel material re-

mains in a single-phase to temperatures well in excess of 1000°C.

Bonus Finding: Aluminum Versions

- VA Omaha Fuel:
 - Delivered 1959-06,
 - No pulsing capability,
 - Predates 160 drawing,
 - Steady-state only fuel (probable)
- VTT Finland Fuel:
 - Delivered 1962-03,
 - Pulse capability,
 - Made after 160 drawing
 - Within 3 months,
 - Steady-state and pulsing fuel (probable)

	1.	Aluminu	m c	lad	U-Z	rH1.) (stead	y state).	Used	for	steady-
state	ope	eration u	p to	250	kw	with	natural	convecti	on co	oling	g of the
core.											

2. Aluminum clad U-ZrH_{1.0} (steady-state/pulsing). These fuel elements, similar to the steady-state fuel elements above, are fabricated using different techniques to permit routine pulsing. The steady-state performance is up to 250 kw and routine pulsing up to 250,000 kw (\$2.00 reactivity insertion) with a graphite-reflected configuration. These fuel elements have also been used in a waterreflected configuration for pulsing up to 1,200,000 kw. High performance operation with these fuel elements is limited to fuel temperatures below 500°C because of a phase transition at ~530°C.

How well do you do fuel?

- Misplaced trust and confidence in programs and documentation.
- Historical programs need reassessment, improvement, best practice incorporation.
- For reactors, especially TRIGA, fuel is the ultimate safety mechanism.
- Poorly maintained fuel leads to unnecessary failures -> no health consequences, but perception and reputation damage.

Nobody likes bad fuel

Contact Information and Questions

If you have any questions after the presentation or conference:

- Jonathan Wallick
 - Reactor Director at USGS TRIGA Reactor Facility
 - jwallick@usgs.gov
 - (303)236-1463

