

A Liquid Deuterium Cold Source at NIST ?

Robert Williams, Paul Kopetka, Mike Middleton and Mike Rowe (Consultant)

IGORR/TRTR Joint Meeting Knoxville, Tennessee September 19–23, 2010

Outline:

- 1. Cold Source Development at NIST
- 2. Feasibility of a Liquid Deuterium Source
- 3. Optimization and Heat Load Calculations
- 4. Work Required for a LD₂ Source
- 5. Conclusion

The NBSR was designed with a 55-cm diameter cryogenic beam port for a D₂O-ice CNS.

For the first 20 years, there was NO cold source! CT thimble filled by a D_2O tank, with BT's along CTE and CTW.

Figure 2.2. Original layout of the cold neutron port.

CTE and CTW are NOT radial beam

They intersect at the point of the planned

NBSR Designed for a D₂O lce Source

- 16 liters of ice at 35 K
- A Lead/bismuth shield (water cooled) required to reduce nuclear heating
- Optimum source contained 8% H₂O
- Operated from 1987 to 1994

The LH₂ CNS, Unit 1, installed in 1995, had a gain of 6 times the D_2O source

VIST Center for

To fully illuminate the beam ports, the source had to have a very large area.

A 320-mm spherical annulus, 20 mm thick, with a 200-mm diameter exit hole was chosen:

- Low heat load (850 W)
- Composed of concentric Al spheres (5 liters of LH₂)
- Hydrogen vapor filled the inner sphere, which was open at the bottom.

Liquid Hydrogen Moderator Heavy Water Coolant Hydrogen Vapor Hydrogen Cryostat Unit 1 Liquid Hydrogen Moderator Heavy Water Coolant Hydrogen Vapor

Unit 1 had too much empty space next to the reactor core.

Vapor in the inner sphere scattered cold neutrons from the beam.

Much more D_2O in Unit 2 results in a higher neutron flux in the CNS region and the adjacent fuel elements.

32 x 24 cm ellipsoid allows more D_2O and a thicker LH_2 annulus.

Vacuum filled inner ellipsoid.

Advanced Hydrogen Cryostat

What is to be gained with deuterium?

Relative Fluxes of LD-2 vs. LH-2 in CT Port

NET Center for

Spectrum shifts to lower energies.

- Gain of 2 for the longest wavelengths.
- Maxwell-Boltzmann temperature drops from 38 K to 28 K
- Large volume, low absorption.
- Small loss of intensity for 5 – 10 meV.
- Up to 50% loss at 15 meV (2.5 Angstroms).

Feasibility of a LD₂ Source (I)

- A LD₂ source requires a large volume compared to LH₂.
- The CT thimble in the NBSR has ample room for a very large LD₂ moderator vessel (30-50 liters).
- Calculations have shown that a gain of 1.6 may be realized for cold neutrons, E < 5 meV (λ > 4 Å).
- The nuclear heat load could be 3-4 kW, however, depending on the volume and vessel wall thickness.

Feasibility of a LD₂ Source (II)

- NEED MORE REFRIGERATOR CAPACITY !
- A 7-kW refrigerator procurement was cancelled in August.
- We are still looking for a few million dollars.
- Alternatively...
- Can our existing, nominally 3.5-kW refrigerator be upgraded (bigger compressor, new turbine expander) to a larger capacity at a higher temperature?
 - (LD₂ boils at ~3 K higher than LH₂)
 - Existing refrigerator insufficient for LD₂ source, as is.
 - Must cool small LH₂ source, too!

Factors Affecting CNS Performance (I)

- 1. Volume: Gain increases with vessel size.
- Reentrant Hole Depth: Can be used to "tune" the gains somewhat.
- Hydrogen Content: The addition of a small quantity may increase gain a bit (need HD scattering kernel).
- Ortho/Para Content: PSI measured the ortho-LD₂ fraction at 76%, which is less than the equilibrium value of 96% (we assume 67%).

Factors Affecting CNS Performance (II)

- Void Fraction (depends on heat load): We assume a void fraction of 10% (about half of Kazimi Correlation for pool boiling) based on LH₂ and R-134a measurements.
 - 6. Exotic Materials for "focusing" (maybe):
 - Diamond nano-particles may be used at ILL to enhance long-wavelengths from vertical LD₂ CNS.
 - Would add to heat load.

Many parameters to vary for optimization.

MCNP is used to optimize CNS performance in a 2 step process.

The code has generalized geometry and *scattering kernels for cold moderators*, and powerful *variance reduction techniques* to tally lowprobability events.

1.) A surface source was generated from the whole-core criticality calculation for CNS performance calculations.

This source preserves the normalization.

2.) The DXTRAN feature was used to force "*pseudo*" particles to a current tally plane at the neutron guide entrance.

Nuclear Heat Load Calculations

- Energy deposited by neutrons and prompt photons directly tallied by MCNP.
- Delayed gamma rays from modified ²³⁵U cross section file.
- Energy from beta particles obtained from tally of the ${}^{27}Al(n,\gamma){}^{28}Al$ reaction rate (1.25 MeV per β).
- Average heating rates:
 - $\circ~0.26$ 0.31 W/g in LD_2
 - 0.30 0.34 W/g in Al

Expected Gains and Heat Loads for Possible LD₂ Sources

Diameter/Depth (cm)	46/28	42/24	38/22
		Y/L	
Volume (liters)	55	41	26
Deuterium (kg)	8.1	6.1	3.9
Aluminum (kg)	4.0	2.7	2.0
Heat Load * (W)	3260	2700	2030
		(J	A.
Gain (λ > 4 Å)	1.63	1.59	1.47
Gain (λ > 9 Å)	2.22	2.14	1.91
	C.02		

* May be higher – depends on wall thickness, working pressure.

NIST center for

The LD2 source must also be passively safe,simple and reliableLiquid Hydrogen Thermosiphon

- A thermosiphon is the simplest way to supply the source with LD₂.
 - Cold helium gas cools the condenser below 23 K.
 - Deuterium liquefies and flows by gravity to the moderator chamber.
 - Vapor rises to the condenser and a naturally circulating system is established.
- The system is closed to minimize gas handling (No vents or pressure relief).

NUST Center for Neutron Research

- Low pressures: 4–5 bar warm, 1 bar operating
- All system components are surrounded by He containments.

Required Work:

Get a refrigerator!

- Finalize performance and heat load calculations incorporating "engineering constraints", such as the minimum wall thickness, and the actual dimensions of the vacuum and He jackets.
- Build and test prototype vessels to check FEA stress analysis.
- Thermal-hydraulic tests of the thermosiphon (may not be needed if system is like the horizontal source at ILL).
- Install a BIG ballast tank.
- Amend the cold source SAR for a higher inventory.
- Control tritium with hydride storage or recombiner.

Conclusion

- The cryogenic beam port of the NBSR is a perfect location for a large-volume LD₂ source.
- It would allow us to do what we do best : provide an intense source of longwavelength neutrons.
- This is our goal, but...
- WE NEED A REFRIGERATOR!!

