Idaho National Laboratory

Advanced Test Reactor NSUF Program Update

Frances M. Marshall Manager, ATR Experiment Program

T. Allen, M. C. Thelen, J. Benson, M. Meyer

TRTR-IGORR Joint Meeting September 2010

A means to provide the research community access to national capability to conduct cutting edge nuclear technology research and development

Examination Facilities (INL MFC, UNLV, NCSU, Test Reactors and Critical Facilities (ATR, ATRC, Michigan, Wisconsin) NRAD, MITR, Pulstar) NE Other National **User Facilities** (APS, SHaRE) Ideas from Smart People Idaho National Laboratory

What's New in the ATR NSUF?

- Experiment Solicitation Changes
- ATR Capability Enhancements
 - Reactivation of Loop 2A
 - Hydraulic Shuttle Irradiation
 System (HSIS)
 - Test Train Assembly Facility
 - Dry Transfer Cubicle
 - Boiling Water Reactor Loop
 - Software and Modeling Upgrades
- Instrumentation Development
- Post-irradiation Examination Capability Additions
- Education Programs
- Partner Facilities

Experiment Offerings

tific User Facility

- Irradiation Experiments, at ATR or Partner Facilities ٠
- PIE-only, at INL or Partner Facilities ٠
- Use of INL Pre-Irradiation Sample Library •
- ATR Critical Facility, for Model Validation or Instrument Testing ٠
- **Rapid Turnaround Experiment** ٠
 - At partner facilities
 - Can be completed in < 2 months, and funding limited
- New User Experiment Expand knowledge base of university PIs ٠ and proposers
 - Collaboration between multiple universities and INL for single experiment
 - Several research topics identified by INL Director
 - Irradiation Assisted Stress Corrosion Cracking (IASCC)
 - Radiation Resistant Alloys
 - Radiation Resistant Ceramics
 - Simple static capsule configuration

Experiment Awards

- Proposal Process Initiated in 2008, Web-based
 - Annual or Semi-annual solicitation (proposals accepted any time)
 - University led
 - Peer review
 - Program relevance review by DOE-NE
 - Open call accepting proposals any time
- First Irradiation Project Initiated PIE in 2010
- First Partner Facility Project initiated in 2009
- RTE and New User Experiment Initiated in 2010

Seventy-five project proposals submitted as part of the first five solicitations, 27 projects

University Experiments

Projects Performed at INL

National Scientific User Facility

Institution	Objective	Status
Wisconsin	Material properties for several structural materials for Generation IV reactor development	In ATR, PIE
UCSB	Development of a library of irradiated alloys to address various questions about the characteristics of irradiation materials	In ATR, PIE
NCSU	Study of neutron irradiation effects on nanostructured metals and alloys, nanograined metals and oxide-disperson strengthened alloys	PIE Initiated
Illinois	Assessment of radiation performance of FeCr alloys to establish the basis for materials and materials modeling development. Additional HSIS experiment planned	In ATR, PIE
Florida	Investigation of irradiation effects of spinel composites as inert matrix materials and characterization of the microstructure of the materials	PIE Initiated
UCSB	Assessment of high fluence embrittlement of RPV steels	In Design
Utah St.	Investigation of thermophysical properties of Hf ₃ Al-Al composite	In Design
Idaho St.	Study of fission detectors (collaboration with CEA) utilizing ATR-C	Testing in ATRC
Drexel	Assessment of structural ceramic damage tolerance. Additional HSIS experiment planned	In Design
Idaho St.	Measurement of actinide neutronic transmutation rates, accelerator mass spectroscopy, with ANL	In Design
UNLV	Neutron modeling code development, validation tests in ATR-C	In Design
Boise State	High temperature nuclear fuel testing on uranium silicide (U3Si2)with collaborators from Westinghouse and the University of Wisconsin	Initiated
Central FL	Analysis of new metallic fuels under development , to include modeling of the fuel performance, in collaboration with Ga Tech, INL, ANL, OSU	Initiated
Texas A&M	Irradiation Behavior and Performance of a Uranium-Zirconium Metal Alloy Fuel, w/ Lightbridge Corp.	Initiated
Michigan	PIE only. Radiation-induced Segregation/Depletion at Grain Boundaries in Neutron Irradiated 304SS at Low Dose Rates, using hex blocks irradiated in the INL EBR-II fast reactor, w/ TechSource, Inc. , INL	Initiated
Drexel	PIE only. Use of the ATR Pre-Irradiated Sample Library to perform a multi-scale analysis on effect of specific grain boundary character distributions on mechanical behavior of steel alloys in LWRs	Initiated

Idaho National Laboratory

Partner Facility Projects

National Scientific User Facility

Institution	Objective	Status
CSM	Use of silicon doping techniques to develop non-destructive aging assessment technology	MIT - Completed
МІТ	Behavior of triplex SiC/Sic tubing at PWR conditions	МІТ
Wisconsin	PIE only - Analysis of TEM samples of irradiated ZrC, ZrN, TiC, TiN	Wisconsin
UCB	Investigation of feasibility of incorporation of hydride fuels in LWRs	MIT - November
ANL	Analysis of irradiated HT9	APS – Completed
IIT	Analysis of Samples of irradiated ZrC, ZrN, TiC, TiN	APS – Completed
INL	Measurements of spatially resolved strain fields in nuclear fuel plates	APS – Completed
LANL	Investigation of the thermodynamics of plutonium/iron solubility in brines	APS – Completed
ORNL	Developing a Mechanistic Understanding of Radiation Tolerant Materials	Michigan, November
Wisconsin	Microstructural and Irradiation Effects on Ag and Cs Diffusion in DVC-	Michigan –
	SiC	Completed
INL	Radiation Effects on Ceramic Coating of Advanced Cladding for Fast	Michigan -
	Reactors	Completed

Hydraulic Shuttle Irradiation System

- 14 shuttle capsules
- In the ATR B-7 Position
- Flux, at 110 MW:
 - Thermal: 2.5E14 n/cm²-s
 - Fast (>1MeV): 8.1E13 n/cm²-s
- ~35 gm contents per capsule
- Drexel University
 - MAX ceramic alloys
 - Tensile, TEM, resistivity
- University of Illinois
 - Fe-Cr alloy
 - Tensile specimens

Test Train Assembly Facility

entific User Facility

- New Facility Operational in 2009 •
- Initial Test Assembly in 2010 (AGR-2) •
 - 2 Instrumented lead experiments planned in 2011
 - 3 Planned in 2012
- New Staff Hired in 2010, Additional Staff in 2011
- Initiated Change to Safety Basis to Increase Fissile Loading

Dry Transfer Cubicle

- Instrumented Lead Experiments Require Re-Sizing Prior to Shipment •
- New Capability to Dry Load refurbished existing hot cell in ATR ٠ building
 - Completed in 2009
 - Successfully re-sized and loaded TMIST-1 and AGR-1 experiments

- Requested by Industry to Enable BWR Investigations, Voiding is Key
- Initial Investigation Indicates Feasibility
- Recent Design Efforts by University of Idaho (UI) Students
 - Initial test loop system design concept in 2009
 - Fabrication completed in 2010
 - Operation expected in 2010
- Next Steps
 - Scale-up to prototype, and test with fuel
 - ATR Safety Analysis for boiling in loop
 - Increased need by industry groups or partners

ATR Analysis and Modeling Upgrades

iational Scientific User Facility

- Seeking Increased Accuracy and Flexibility in ATR Core and Experiment Modeling
- Initiated in FY 2009 to Develop New ATR Analytical Tools
 - Develop 3D models with existing codes Helios, Attilla, SCALE/ NEWT, MCNP
 - Validation against ATRC, ATR experiments, and ATR fuel
 - Identification of ATR in-core instrument needs
- 2010 Key Activities
 - Helios fuel depletions for 4 ATR cycles
 - ATRC tests- establish measurement instruments, test configuration
 - In-canal instruments for fuel burnup measurements, good correlation
- Future Plans Planned completion in 2014
 - Continued Helios fuel depletions in 2011, in parallel with PDQ
 - Additional testing in ATRC develop ATRC test criteria vs. analysis
 - Focus on integration and standardization with established industry codes

Idaho National Laboratory

Real-time Measurements Needed to Understand Observed Irradiation Phenomena

- Interrelated phenomena observed Swelling during fuel and materials irradiation
 - Cracking
 - Corrosion
 - Creep
 - Swelling
 - Densification
 - Rim formation
 - Fission gas release
 - Crud deposition
 - Pellet-Cladding Interactions
 - Real-time measurements needed to understand and predict phenomena
 - Pressure
 - Temperature
 - Thermal conductivity
 - Diameter and length changes
 - Thermal and fast flux
 - Crack growth

- Sudden increase in porosity
 Onset of Xe release
- Increasing intergranular porosity
 Equiaxed grain growth

P-C interaction

Rim formation

Data needed to support FC R&D, NGNP, ATR NSUF, and LWRS programs

Idaho National Laboratory

P-C interaction

13

Several Instrumentation Enhancements Available for Various ATR Test Locations

Scientific User Facility

Requirements for In-pile Instruments

- Reliable
- Accurate
- Miniature
- High temperature resistant
- Corrosion resistant
- Neutron / gamma 'resistant'
- Non-intrusive
- "Low" cost

	Parameter				Proposed Advanced Technology	
Parameter	Static Capsule	Instr. Lead	PWR Loop	ATR Technology	Available at Other Reactors	Developmental
Temperature	Å	V	\checkmark	 Melt wires (single) Paint spots (single) SiC Temperature Monitors (range) 		 Wireless (range) Ultrasonic thermometers
		V	\checkmark	 Thermocouples (Type N, K, C, and HTIR-TCs)^a 		Fiber Optics
Thermal Conductivity		V	V	Out-of-pile examinations	 Degradation using signal changes in thermocouples 	Hot wire techniques
Fluence (neutron)	1	\checkmark	V	 Flux wires (Fe, Ni, Nb) 	 Activating foil dosimeters 	
		V	V		 Self-Powered Neutron Detectors (SPNDs) Miniature fission chambers 	Moveable SPNDs
Gamma Heating		V	V		 Degradation using signal changes in thermocouples 	
Dimensional	\checkmark	\checkmark	\checkmark	 Out-of-pile examinations 		
		V	V		LVDTs (stressed and unstressed)Diameter gauge	 Ultrasonic Transducers Fiber Optics
Fission Gas (Amount, Composition)		V	V	 Gas Chromatography Pressure sensors Gamma detectors Sampling 	 LVDT-based pressure gauge 	 Acoustic measurements with high-frequency echography
Loop Pressure			\checkmark	 Differential pressure transmitters Pressure gauges with impulse lines 		
Loop Flowrate			\checkmark	 Flow venturis Orifice plates 		
Loop Water Chemistry			V	 Off-line sampling /analysis 		
Crud Deposition			V	Out-of-pile examinations	 Diameter gauge with neutron detectors and thermocouples 	
Crack Growth Rate			\checkmark		 Direct Current Potential Drop Technique 	

^aType C thermocouple use requires a "correction factor" to correct for decalibration during irradiation.

ISU/CEA/INL Project Investigating Use of Real-time In-core Flux Detectors in ATRC

cientific User Facility

CEA fission chambers

- Fast and thermal flux measurements obtained from foils, wires, SPNDs, and fission chambers
- Sensors cross-compared for response • time, accuracy, and longevity.
- Data ultimately will allow development of • real-time 3D ATRC core map

BTB fission chambers

FY 2010: New PIE Capabilities

2 ⁰⁰

5-

• Mechanical properties

- Nanoindenter
- Small sample mechanical testing
- Automated micro-hardness tester

Analysis at micro- and nano-scale

- Chemical and structural analysis at the nano-scale
- Atom Probe-identify single atoms
- Spectroscopy-light scattering to understand atomic structure
- SEM hot stage-real time analysis of changes in structure due to temperature
- Sample Preparation
 - Dual-beam FIB #2
 - Metallography Containment Upgrade
- Fuel Examination
 - Fuel Exam Machine optimization study

Laboratory.

Shielded Dual Beam Focused Ion Beam

 Investigation of damage that occurs at the submicron level in irradiated fuels and materials. Prepare small volume samples of highly activated materials for subsequent examination in the Electron Microscopy

- Electron and ion imaging
- Site-specific microsectioning for TEM membrane preparation
- Imaging resolution: <3 nm
- 3D image and chemical reconstruction of submicron features

Two columns for simultaneous imaging and microscale milling and sectioning

Idaho National Laboratory

Center for Advanced Energy Studies (CAES)

- Collaboration between INL and Idaho Universities
- Facility owned by State of Idaho
- NRC Licensed
- Imaging Laboratory will house high-end equipment for use with lower activity samples
- Atom Probe, FIB, SEM, TEM, nano-indenter
- Small sample mechanical testing
- Material quantity limits sufficient for atom probe and TEM on fuel
- Outside the INL firewall, easier remote access

Irradiated Material Characterization Laboratory

- Consolidates new post-irradiation analytical capability
 - Shielded enclosures for handling multiple irradiated fuel samples
 - Inert gloveboxes within enclosures and interfaced with instruments for contamination control
 - Enables transfer between instruments
 - Instruments can be serviced when radioactive material is removed
 - EPMA, FIB, FEG-STEM, μ-XRD, thermal analysis, mechanical testing, sample prep
- Current status
 - Currently in conceptual design
 - Ground breaking in 2011
 - Occupancy in 2012

ATR NSUF Partnerships

Scientific User Facility

- ATR NSUF aims to meet customer needs
- ATR NSUF will include additional capability that benefits users
 - University research reactors
 - Hot cells or hot laboratories
 - Accelerator facilities
 - Analytical capability
- Process

MIT Reacto

ed Photon Sourc

 Potential university or laboratory partners self-nominate

> adiochemistry Laboratori UNLV University of Nevada Las

> > Iniversity of

- Expert group evaluates nominations
- Capabilities added to next proposal solicitation andem Accelerator Ion Beam

PULSTAR Read

- •Illinois Institute of Technology
- Massachusetts Institute of Technology
- •University of Michigan
- •North Carolina State University
- •University of Nevada at Las Vegas
- •University of Wisconsin

20

daho National Laboratory

University Education Programs - Goal is to Enhance Nuclear Research Workforce

- Annual Users Week (June)
- Workshops at Conferences
 - TMS (The Minerals, Metals & Materials Society)
 - MS&T (Materials Science & Technology Meeting)
 - **Environmental Degradation Conference** •
 - Student ANS Conference
- 23 Summer Internships in 2010
 - ATR experiment design and analysis
 - PIE activities and technique development
 - ATR Operations for upcoming seniors leading toward full time employment following graduation
- Faculty Student Research Teams
- **University Seminar Visits**
- IASCC Fundamentals Workshop
- **Colloquium Series** •
- Reactor Testing Textbook
- Post-doc Fellowships
- Sabbatical Appointments

ATR National Scientific User Facility: Prototyping the Lab of the Future

Focal Point for Innovation — Stewards of the National Nuclear Capability

http://atrnsuf.inl.gov/

