Applying Modern Reliability Practices to Aging Research Reactors

Benjamin Rothrock

High Flux Isotope Reactor Oak Ridge National Laboratory UT-Battelle

> 1 Bethel Valley Road Oak Ridge, TN 37831 865-576-9805

Managed by UT-Battelle for the Department of Energy

The Fundamentals...

• Why do I care?

- As equipment ages, many failure modes are based on wear which is dependent on time in service
- Nuclear facilities are not like turning on a light switch... multiple integrated systems and equipment necessary to operate

• What's the benefit in changing how I do maintenance?

- By performing the right maintenance on the right equipment at the right time (condition driven corrective and preventive maintenance), one can:
 - Save money
 - Save resources
 - Reduce work load
 - Improve Reliability/ Availability

Process

- All right, I'm interested, but how/ what changes?
 - Religiously, routinely apply Condition monitoring
 - Condition monitoring implies collecting and analyzing data to determine condition
 - Include trending of operating parameters, not just predictive maintenance technologies
 - Don't just collect data, do something with it! Consider collecting less data if it means more realistic chance for thorough analysis and action
 - Consider cooperating with partner higher education facility since many now offer reliability training/ students
 - Now that you have data and the resultant analysis information, make it available to everyone to plan and act on
 - Communication is the key to success!
 - Take advantage of failure history, industry practice, and applied condition monitoring to review preventive maintenance procedure and frequencies (PM Optimization)

Condition Monitoring

Vibration Analysis (PU-1A)

Lubrication Analysis (Cooling Tower Fan 4A Gearbox) Infrared Thermography (Cold Source Control Cabinet)

Sp2 79.5

Sp1 166.6

95.5 °F

74.3

4 Managed by UT-Battelle for the Department of Energy

Presentation_name

Communication!

		Vibration						OIL			Thermography	Ultransonic		
Equipment ID	Equipment Desc.	Reported 430	Reported 429	Reported 428	Reported 427/ Last Report	Sub- Component	Fault Type	Current	Previously Reported	Previously Reported	Current/ Last	Current/ Last	Notes	Method of Resolution
C#21	He Compressor #21	Normal 08/09/2010	Normal 06/18/2010	Normal 05/05/2010	Normal			Normal	Normal 05/28/2010	<u>Watch</u> <u>12/22/2009</u>	Normal 11/30/2009	Normal 08/09/2010	Oil- sampling periodicity will be every 6 mo. Based on mfg recommendations; high particle count but decreased likely due to sampling equipment	Oil PdM documentation in development
C#22	He Compressor #22	<u>Watch</u> 08/09/2010	<u>Watch</u> 06/18/2010	Watch	<u>Watch</u> 02/22/2010	Compressor	Gear	Normal	Normal 03/15/2010	<u>Watch</u> 12/22/2009	Watch 11/30/2009	Watch 08/09/2010	Vibration - Indications of wear on the female lobe of the screw compressor (high amplitude of female rotor turning speed and harmonics)- recommend continue to monitor Ultrasonics & IR Thermography - Ultrasonic evaluation has slight gravel noise and IR Thermography shows elevated temperatures (+20F from HE Compressor #21) Other - Elevated helium discharge temperatures	Oil PdM documentation in development
C#23	He Compressor #23	Normal 08/09/2010	Normal 06/18/2010	Normal 05/05/2010	Normal 02/22/2010			Normal	Normal 03/15/2010	<u>Watch</u>	Normal 11/30/2009	Normal 08/09/2010	••	Oil PdM documentation in development
C#24	He Compressor #24	<u>Significant.</u> 08/09/2010	<u>Watch</u> 06/18/2010	<u>Watch</u> 05/05/2010	<u>Watch</u> 02/22/2010	Compressor	Bearing	Normal	Normal 03/15/2010	Normal 12/22/2009	Normal 11/30/2009	Watch 08/09/2010	Vibration - Singificant increase in amplitude: indications of looseness/ clearance on compressor- could be bearing or male to female lobe interaction fault- recommend continue to monitor and plan for eventual replacement (spring long outage?) Other - Ultrasonic evaluation has definite gravel noise; notable audible gravel noise present now as well	Oil PdM documentation in development
C#25	He Compressor #25	Normal	Normal	Normal 05/05/2010	Normal 02/22/2010			Normal	Normal 03/15/2010	Normal 12/22/2009	Normal 11/30/2009	Normal 05/05/2010	88	Oil PdM documentation in development
H2 COMP	Hydrogen Compressor	Normal	Normal	Normal 04/29/2010				Normal	Normal 03/17/2010					
PU-6A	Sec. Coolant Pump PU-6A	Normal	Normal 06/18/2010	Normal 05/04/2010	Watch			<u>Watch</u> 07/20/2010	Normal 04/29/2010	<u>Watch</u> 02/11/2010			Oil - oil purified EOC 426; upper bearing particle count high; oil change planned EOC430	
PU-6B	Sec. Coolant Pump PU-6B	<u>Watch</u> 08/09/2010	<u>Watch</u> 06/18/2010	Watch	<u>Watch</u> 02/22/2010	Motor	Bearing	<u>Watch</u> 07/20/2010	<u>Watch</u> 06/10/10	<u>Watch</u> 04/29/2010			Vibration - Upper bearing minor bearing wear indications- Continue to Monitor Oil - elevated particle count upper bearing reservoir, oil change planned EOC430	
PU-6C	Sec. Coolant Pump PU-6C	<u>Significant</u> 08/09/2010	Significant	Significant	<u>Significant</u> 02/22/2010	Motor	Bearing	Watch	<u>Watch</u> 06/10/10	<u>Significant</u> 04/29/2010			Vibration - Bearing wear on lower bearing- recommended action is to collect oil sample data and plan for inspection; increasing audible noise also observed; Continue to Monitor and plan for replacement OII- Water content addressed; oil filtered and small particle count elevated; planned replacement of oil EOC 430	Work Request Submitted

5 Managed by UT-Battelle for the Department of Energy

Condition Monitoring

• What equipment?

- Expert-based, Qualitative Process for examining equipment importance to HFIR mission
 - Including equipment necessary for research facilities- not just the reactor
 - Nuclear safety implications/ Technical Safety Requirements
 - Engineering and Craft resource
 - Lead time for parts/ replacement unit
 - Effect on reactor power
 - Cost
 - External commitments
 - ETC

Condition Monitoring

• How often?

- Frequency for condition monitoring data collection as well as preventive maintenance is dependent on many factors:
 - Equipment "importance" characterization
 - Operating environment
 - Operating frequency/ load demands
 - Industrial practice for identical/ similar equipment
 - Manufacturer's recommendations
 - Failure modes and effects considerations
 - Does not need to be a formal process- Utilize available resources (EPRI, RCM books, other research reactors that have "blazed a path", etc.)
 - How many ways can it fail? Which ways can be identified in applied condition monitoring activities? How long would it take to fail given the mode? Etc.
 - Equipment failure history

Example- Condition Monitoring

PU-1A Primary Coolant Pump Motor

- Vibration data collected per operating cycle
- Original equipment to reactor commissioning date-'65
- Upper thrust bearing is SKF 29326 (from drawing/mfg)
 - From SKF- Fault frequencies (available via website or call):
 - Defect on Outer Race (BPFO) = 9.46 X TS
 - Defect on Inner Race (BPFI) = 11.51 X TS
 - Defect on Rolling Element (BSF) = 3.57 X TS
 - Defect on Cage (FTF) = 0.45 X TS

inner

Condition Monitoring Example Cont.

hfir facility.rbm / PC1 / Primary Coolant Pump PU-1A

Markers show fundamental defect frequency of BPFO and harmonics

PU-1A Lower (Outer) Race Spalling

9 Managed by UT-Battelle for the Department of Energy

Preventive Maintenance Optimization

- If you've applied the resources to collect and analyze data, why not take advantage of your investment?
 - Start with equipment with current repetitive maintenance tasks
 - Review task list for a given piece of equipment and compare to likelihood of failure mode, consider risk mitigation by condition monitoring, industrial practice, and failure history
 - Review frequency of task based on equipment "importance", risk mitigation by condition monitoring, industrial practice, and failure history

Example of Optimization:

Motor Control Center "C"

Previous

•3Y

- Clean all connections
- Visibly inspect all terminals, electrical joints, and bus connections
- Visibly inspect all wiring
- Check connections tight
- Cycle breakers and verify operation with multi-meter
- Inspect and replace insulation
- Micro-ohm test all connections
- High voltage test all supply transformer windings and motor loads

volo brookov

<u>Revised</u>

- •Semi-annual:
 - Infrared Thermography

•Annual:

- Cycle all breakers and verify operation
- High voltage test motor loads
- •5Y:
 - Clean all connections
 - Visibly inspect all terminals, electrical joints, bus connections, and wiring
 - Micro-ohm test all connections
 - High voltage test all supply transformer windings

11 Managed by UT-Battelle for the Department of Energy

Presentation_name

Summary

- Condition monitoring can provide detailed condition assessment (right maintenance, right time)
- Resources are readily available
 - Some resources are contractors, partner higher education organizations, industry meetings, etc.
- Implementing condition monitoring can provide information/ justification for reviewing PM frequency (right time)
- Balancing PM resources and condition monitoring can provide positive results on maintenance cost and work load, not to mention the benefit to reliability and availability
 - Communication and thorough analysis are the key
- QUESTIONS????

