

energie atomique • energies alternatives

CARMEN: an experimental configuration in the MINERVE critical facility for the qualification of neutron cross sections in epithermal spectrum

Jacques DI SALVO jacques.di-salvo@cea.fr <u>Muriel ANTONY</u> muriel.antony@cea.fr

CEA Cadarache, France

CADARACHE IGORR September 19-23 2010 Knoxville, TN USA

1

Outline

atomique • energies alternative

1. Introduction

- 2. The MINERVE facility
- 3. Oscillation technique of measurement
- 4. OSMOSE and OCEAN programs
- 5. Conception of the CARMEN lattice
 - Main characteristics of the CARMEN configuration
 - Estimation of experimental signals
 - Optimization of the design
 - Mechanical design
- 6. Conclusion and perspectives

Introduction

To gain experimental data to under-moderated reactors, the \bigcirc

energie atomique • energies alternatives

Qualification of neutronic parameters (ERASME program in the EOLE facility (1985))

e made

Determination of capture rates (heavy nuclides, fission products) (ICARE irradiations in the MELUSINE facility (1986-1988))

Measurement of the global capture of fission products (oscillation of spent fuels) (MORGANE program in the MINERVE facility (1986))

Complementary results were foreseen:

Improvement of cross sections for heavy nuclides and new neutron absorbers (OSMOSE and OCEAN programs in the MINERVE facility)

<u>A new configuration has been designed:</u> CARMEN (<u>C</u>ore with <u>A</u>n epithe<u>RM</u>al n<u>E</u>utron moderatio<u>N</u>)

The MINERVE facility

CADARACHE IGORR September 19-23 2010 Knoxville, TN USA 4

The MINERVE facility

Neutronics spectra in the experimental zone :

CADARACHE IGORR September 19-23 2010 Knoxville, TN USA

Oscillation technique of measurement

CADARACHE IGORR September 19-23 2010 Knoxville, TN USA

6

The OSMOSE and OCEAN programs (2005 - 2012)

Characteristics of the CARMEN configuration

Main parameters required for the design:

- Epithermal spectrum with a moderation ratio Vm/Vf = 0.9
- A high content in plutonium (representative of under-moderated concepts)
- Pins already available in the facility (7% in Pu and 3.7% in U-235)
- Several safety criteria to be respected (importance of the experimental zone compared to the driver zone)
 Oscillation cane

Oscillation in a dry environment (to improve the reproducibility of the measurement)

Estimation of experimental signals

energie atomique • energies alternatives

Experimental signals in R1-MOX lower than in R1-UO2

	R1-UO2	R1-MOX	CARMEN
	configuration	configuration	configuration
∆Sн8-нı (pilot unit)	410 400 ± 1 000	119 600 <u>+</u> 1 000	expected signal ~ 50 000 ± 1 000
Relative uncertainties	0.24%	0.84%	~ 2%

To optimize relative uncertainties for CARMEN lattice, experimental signals have to be <u>as high as possible</u>

Whatever the experimental lattice:

$$\Delta S = \alpha^{\text{calib}} \Delta \rho$$

Estimation of experimental signals

 $\alpha_{\text{CARMEN}}^{\text{calib}}$ can be estimated by a combination of:

- 3D Monte-Carlo calculations (MCNP5 code)
- 2D deterministic calculation (APOLLO2.8 code)
- results of previous measurement (R1-UO2)

Checking of this method with the well known R1-MOX lattice

	Estimation	Measurement
α _{R1-MOX} (pilot unit)	815 ± 98	790 ± 15

Good agreement

Optimization of the design

Optimization of the design

Neutron spectra in the experimental device

IGORR September 19-23 2010 Knoxville, TN USA 12

Mechanical design

- 2 dedicated grid in an aluminum cask (versatility)
- Thick grid to drive the pins under 2 m of water
- Biological protection //
- Dedicated device for extracting samples from the top of the pool

Conclusion and perspectives

energie atomique • energies alternatives

- Neutronic conception achieved
- Mechanical building in progress
- Reduction of experimental uncertainties
- New calibration samples
- Oscillations in CARMEN lattice should start in 2012

⇒ Improvements of nuclear data used for the JEFF3 library

Conclusion and perspectives

CADARACHE IGORR September 19-23 2010 Knoxville, TN USA 15

energie atomique • energies alternatives

Estimation of experimental signals

energie atomique • energies alternatives

$$\Delta \rho = \frac{\Delta N_{Cd} \int \sigma_{Cd}(E) \Phi(E) \Phi^*(E) dE}{I_f}$$
$$\Rightarrow \Delta S = \frac{1}{c} \frac{I_f}{\int \sigma_{Cd}(E) \Phi(E) \Phi^*(E) dE} \Delta \rho$$
Eq. 1

As the proportionality factor c depends only of the acquisition system, Eq 1 is rewritten for each core configuration:

$$\Delta S_{C} = \frac{\int \sigma_{Cd}(E)\Phi(E)\Phi^{*}(E)dE}{\int \sigma_{Cd}(E)\Phi(E)\Phi^{*}(E)dE} \frac{\Delta\rho_{C}}{\Delta\rho_{R}} \Delta S_{R}$$
 Eq. 2

The integrals can be simplified:

the capture cross section of cadmium is essentially thermal,

and by assuming the same spectral variations for both the adjoin and direct neutron fluxes: (Φ^2)

A reactivity effect introduced by a sample is exactly compensated by an automatic

$$\Delta S_{C} = \frac{\left(\Phi_{ih}^{2}\right)_{R}}{\left(\Phi_{ih}^{2}\right)_{C}} \frac{\Delta \rho_{C}}{\Delta \rho_{R}} \Delta S_{R} \qquad \qquad \text{Eq. 3}$$

The experimental signals in each configurations can be related to the reactivity effects calculated from 2D deterministic calculations though the same calibration process: $\Delta S = \alpha^{calib} \Delta \rho^{A2} \Rightarrow \alpha_{c}^{calib} = \frac{\Delta \rho_{c}}{\Delta \rho_{R}} \frac{\left(\Phi_{lh}^{2}\right)_{R}}{\left(\Phi_{lh}^{2}\right)_{R}} \frac{\Delta \rho_{R}^{A2}}{\Delta \rho_{c}^{A2}} \alpha_{R}^{calib}$