Diagnosing and Troubleshooting Successive Fission Chamber Failures

C. Corey Hines, Mathew D. King, and Donald E. Wall Washington State University Reactor Nuclear Radiation Center

Washington State University Reactor: Background

- TRIGA® conversion (original MTR)
- 1 MW steady state with pulsing capability
- HEU/LEU mixed core until 2008
- Fuel conversion to 30/20 in central region and 8.5/20 outer region in October 2008
- Fission chamber replacement prior to this episode was in 2005

Symptoms and immediate actions

- 10 % power reading on NLW-1000, other power level indications reading normal for shutdown
- Verified all control elements were fully inserted
- Re-calibrated the NLW-1000 using resistors and pA source
- The PA-1000 and NLW-1000 were ruled out as the source of the problem by injecting pulses into the PA and verifying the NLW-1000 readout.

Diagnosis

- A power supply was put in line with a DVM to measure current.
- With changing voltage in the HP supply, we observed a leakage current in the DVM, indicating a resistance between the +/- wires of about 130 µA at 300 V.
- Possibility of a bad MHV wire (or the connector, or the insulator inside the detector cap)

The Fix

- OSU Reactor donated a fission chamber.
- GA sent detector cabling and insulation materials.
- Local shop fabricated detector can and performed chamber closure welds.
- Detector came with poly insulator that was replaced with teflon insulator milled in house.

Test Data: WL-8073

 Table 1. Detector as received, with poly insulator around detector center wire

		Detector	Detector+cable
D	resistance (Ω)	2.47E+08	N/A
M	capacitance (pF) 230		N/A
	voltage 1 (V)	200	200
Hec	voltage 2 (V)	800	800
IPS	current 1 (A)	1.49E-07	1.49E-07
+ nete	current 2 (A)	1.50E-07	1.50E-07
Ť	resistance (Ω)	6.00E+11	6.00E+11

Test Data: WL-8073

Table 2. Detector with Teflon insulator around detector center wire, detector housing pre and post closure weld.

		Pre-weld		Post Weld	
			Detector	Detector+cable	Detector+cable
	DVM	resistance (Ω)	2.50E+08	2.50E+08	2.50E+08
		capacitance (pF)	237	1000	1001
	HPS + electrometer	voltage 1 (V)	200	200	200
		voltage 2 (V)	800	800	800
		current 1 (A)	1.46E-07	1.40E-07	1.49E-07
		current 2 (A)	1.47E-07	1.41E-07	1.50E-07
		resistance (Ω)	6.00E+11	6.00E+11	6.00E+11

 Pulled the failed fission chamber out of the core and cut the housing open using a dye blade pipe cutter.

Prevention is key

- Because our pre-amplifier is in the pool room on the bridge, any change in humidity can be problematic
- Possible relocation of pre-amp to the reactor console
- The "noise" problems previously experienced in the NLW-1000 have not been observed since new detector install

Special Thanks to:

Oregon State University Reactor

General Atomics – ESI

The University Texas at Austin Reactor