

# UPDATE

#### Flowing Coolant Through the NIST Reactor Thermal Shield Using Vacuum Instead of Positive Pressure

TRTR/IGOR September 2010

Anthony Norbedo Anthony.norbedo@nist.gov Paul Brand

National Institute of Standards and Technology U.S. Department of Commerce





#### Present System

- Function of the Thermal Shield is to limit heat production in the Biological Shield.
- Located between the Biological Shield and Reactor Core.
- It consists of 188 copper lines (9.5 mm (3/8") Inside Diameter) embedded in lead.
- Lines are attached to Supply and Return Ring Headers.
- The Headers are attached to a cooling system located below the Reactor in the Process Room.
- Working Conditions:
  - Line temperature: 38 °C (100 °F)
  - Supply Pressure: (48 to 69) kPa ((7 to 10) psi)
  - Flow: (8 to 11) L/min ((2 to 3) gpm)
- At present some line have stress cracks and leak water.



## **Thermal Shield Cutaway View**



#### Present Coping Mechanisms

- When a leak is detected during cycle:
  - Isolate Line
  - When more than 8-in-a-row, let one line leak
- Perform repairs during shutdowns
  - Use sealant to plug holes
    - Temporary Solution: Typically 40-60 leaks per Cycle
    - Time consuming (affects shutdown duration)
    - Creates Radioactive Waste and Exposure
    - Potential Contamination of the experimental floor and its occupants
    - Risk of deterioration of functional lines (loss of flow and clogging)
    - Unknown effects on biological shield (e.g. detector wells)



## **Thermal Shield Line Photos**

Miniature Camera in 9.5 mm (3/8") inside diameter tube

Several feet into tube run





5

NGT Center for Neutron Research

## Placing the Thermal Shield Lines under a vacuum

#### Purpose

- To eliminate water leakage through the various holes in the lines while lowering operator exposure (ALARA) to the activated Thermal Shield system.
- To stabilize the lines from further worsening due to applying sealant that potentially causes decrease flow.

#### Prior Experience

 In the early 1960's the Australian Atomic Energy Commission, presently ANSTO, installed a vacuum system on their leaky HIFAR Shield Cooling lines. Ref. AAEC/TM133 and 149, ANSTO NTP/TN189

#### Design Approach

 Vacuum is achieved by using an eductor (i.e. jet ejector, aspirator). The eductor is a device that when a high pressure is applied to its input, a vacuum is generated from its side opening.



- A conservative design approach:
  - Replace the existing supply pump
  - Add eductors
  - Add a high pressure pump 690 kPa (100 psi) for the eductors.
  - Reuse the water storage tank, filter and heat exchanger
- CO<sub>2</sub> in the system
  - Surrounds the reactor vessel to decrease the formation of Argon
  - Is drawn through the holes in the lines
  - CO<sub>2</sub> solution under vacuum "boils" at low temperatures: two phase flow: higher friction: restricted flow.



- Air in the system
  - Some air will be drawn in through the holes along with CO<sub>2</sub>.
  - The influx of air into the system will have two effects:
    - Increases the amount of Argon that is exhausted out the stacks
      - Conservative calculations show that in the worst case condition the concentration of Argon exhausted would only increase from 2% to 2.6% of allotment.
    - Increases the pH of the water



- pH compensation
  - Adding a one time dose of Magnesium Carbonate (MgCO<sub>3</sub>) for pH compensation due to CO<sub>2</sub>.
  - The CO<sub>2</sub> draws the pH of the water down to a pH around 5.
  - MgCO<sub>3</sub> brings the pH back up to 6.8 to 7.2
  - <sup>27</sup>Mg has short half life: 9.45 minutes
    - Compare <sup>64</sup>Cu: 0.529 days = 762 minutes
  - As a pH control feature, air will also be introduced into the Water Storage Tank to mainly increase the pH of the water in the tank.





### **Thermal Shield Tests**

#### **Testing Performed at the NCNR**

- Single Line Test on the reactor
- To determine:
  - Types of pollutants would be drawn through the holes
  - pH change in the cooling water due to CO<sub>2</sub>
  - The amount of activity in the water under vacuum







#### Test Succeeded (~10 reactor cycles)

- Pumped water using Vacuum without leakage
  Neutralized Entering CO<sub>2</sub> with MgCO<sub>3</sub>
- Established full control of pH (6.5 < pH < 7.5) through aeration</li>
- Found no Copper Corrosion
  - Was Confirmed Independently by NIST Metallurgy
- Exposure Activation has decreased through:
  - Sealing the lines will not be necessary
  - Shielding can be placed around the headers
  - Elimination of leak water disposal



### **Thermal Shield Tests**

#### Multi-line Test Stand

- Standalone Test Stand built with clear tubing to mock the Thermal Shield Headers and six Lines.
- To determine:
  - Interaction between leaky lines
  - Importance of hole location in a line
  - The data gathered was then used to help in a full system design for the actual Thermal Shield.
    - System was controllable with minimal amount of automatic equipment.



## **Multi-Line Test Stand**





NGT Center for Neutron Research Six Line Test Stand

## **Corrosion of Copper Lines**

- Electrochemical Experiments
  - (Richard Ricker, Metallurgy, MSEL, NIST)



# **Corrosion Cell Setup**



## **Projection Matrix**

Concentrations in mol/L; pressure in atm.; grid values: Theoretical pH

| [Mg <sup>2+</sup> ]<br>pCO <sub>2</sub> | 0.018 | 0.045 | 0.113 |
|-----------------------------------------|-------|-------|-------|
| 0.16                                    | 7.2   | 7.6   | 8.0   |
| 0.40                                    | 6.8   | 7.2   | 7.6   |
| 1.00                                    | 6.4   | 6.8   | 7.2   |



18

NUST Center for Neutron Research

#### Corrosion Test Matrix and "[H+] = f([Mg<sup>2+</sup>], pCO<sub>2</sub>)"

- The following figure illustrates the pH of the water as a function of the amount of Mg<sup>2+</sup> and partial pressure p<sub>co2</sub>. A decrease in partial pressure, meaning an increase in vacuum, causes an increase in pH for a given amount of magnesium added to the water.
- For instance if we have 0.08 mol/L at 1 atm we get 7 pH, but at 0.5 atm we get 7.3 pH. Now solving for amount of MgCO<sub>3</sub> with 4921 L (1300 gal) of water in the tank: 84.3 g/mol x 0.08 mol/L x 4921 liters = 33187 g (73 lb.)







NUST Center for Neutron Research



Any mention of commercial products within this presentation is for information only; it does not imply recommendation or endorsement by NIST.





## **Benefits of a Vacuum System**

- No need to replace the lines
- Leakage in the line stop
- Controlled vacuum operation is feasible without damage to existing system
- Reactor operational improvement
- Very possible ALARA gains



## Follow-on

- Completed: Detail Design by Merrick & Company
- Fabrication, Installation and Training RFP: On the streets
- RFP award: Expected in September using American Recovery and Reinvestment Act (ARRA) money
- Full scale prototype will be assembled prior to fullup installation
- Full-up installation: April 2011
- Completion: Fourth quarter 2011
- NCNR Action Items
  - Engineering Change Request/Notice
  - Safety Evaluation Committee review



## **NCNR Reactor**





NGT Center for Neutron Research