The Advanced Test Reactor Capabilities and Future Operating Plans

Frances M. Marshall

September 13, 2005

Reactor Technology Complex at the Idaho National Laboratory

Advanced Test Reactor Description

- Pressurized, light-water moderated and cooled, beryllium reflector
- Reactor Vessel, stainless steel, ~12' diameter cylinder, ~35' high
- Reactor Core, 40 HEU curved plated elements, 48" (diameter & height)
- Max. Testing Conditions up to1400°F, 3600 psig
- Maximum Total Core Power 250MW
- Approximate Peak Flux Values (Unperturbed), Symmetrical Profile
 - 1 x 10¹⁵ n/cm²-sec thermal
 - $-5 \times 10^{14} \text{ n/cm}^2\text{-sec fast}$

ATR Vessel & Internals

ATR Core Cross Section

IRRADIATION TANK "H" HOLE: "B" HOLE **FUEL ELEMENT** ON-7 NECK SHIM ROD LARGE LOOP IRRADIATION FACILITY SAFETY ROD INBOARD "A" HOLE OUTBOARD "A" HOLE **OUTER SHIM** CONTROL CYLINDER STANDARD LOOP IRRADIATION FACILITY SOUTH AND EAST "I" HOLE OS-13 OS-15 OS-16 OS-17 FLUX TRAP IRRADIATION OS-21 **OUTER SOUTH** IRRADIATION TANK

OUTER NORTH-

Test Capabilities:

Test size - up to 5.0" D

77Irradiation Positions:

- 4 Flux Traps
- 5 In-pile Tubes
- 68 in Reflector

Center Flux Trap Typical Flux Profile

Simple Capsule Testing in the ATR

- Many are non-instrumented (e.g, radioisotopes)
- Passive instrumentation (flux wires, melt wires)
- Reflector positions or flux traps
- Isotopes, structural materials, fuel samples
- Lengths up to 48"; diameter, 0.625" 5"
- Usually the least expensive testing configuration
- Six month lead time

Capsule Assembly for MOX Fuel Test

Instrumented Lead Experiments

- On-line instrument (temperature) measurements
- With or without active temperature control
- Structural materials, cladding, fuel
- One year lead time for new test design and installation
- Irradiation Test Vehicle
 - Three mini-in-pile tubes, each with five temperature control zones
 - Capsules up to 1" diameter
 - Temperature control range 480-1400°F, +/- 9°F
 - Temperature controlled by varying gas mixture in conduction gap
 - Could be re-installed

Temperature Response During Reactor Startup for Temperature Controlled Capsule

In-Pile Loop Tests

- Five flux trap positions currently have pressurized water in-pile loop tests
- Past operations have had as many as nine loop tests
- Each loop has its own temperature, pressure, flow & chemistry control systems – not in contact with the primary coolant system
- Structural materials, cladding, fuel
- Flux tailoring and transient testing capabilities
- Up to two year lead time for new test programs

ATR Standard Loop Layout

Previous Testing in the ATR

- U.S. Naval Nuclear Propulsion Program
- Material and Fuels for New Production Reactor (project cancelled in 1992)
- Graphite Oxidation and Aging Studies for Magnox
- Pu-238 Production Studies
- Weapons Grade Mixed Oxide Fuel
- Reduced Enrichment for Research and Test Reactors (RERTR) – High Density, Low Enrichment
- Plant Maintenance Technology & Welding of Irradiated Materials (stainless steel)

Current ATR Irradiation Projects

- Advanced Fuel Cycle (AFC)
 - Fuel tests expected to continue through 2010
 - Gas Fast Reactor material tests 2004 2008
- Cobalt-60
- Zirconium Tests, 1997 2006
- RERTR
 - Mini plate testing 2005 2006
 - Full fuel plate testing, 2006 2009
- Neptunium tests Cross Section Data, 2005 2006
- Advanced Gas Reactor, Fuel Tests, 2006 2015

Proposed Irradiation Tests

- Next Generation Nuclear Plant, Graphite, 2006
 2008
- Fuel Qualification for the new ATR Gas Test Loop, 2006 – 2007
- Isotopes
- Plutonium-238 for Radioisotope Power Systems
- Simulation of BWR Conditions for Various Tests
- Material Tests for International Research on Aging, New Reactor Designs (steel, graphite)

Planned Investments in the ATR

- Gas Test Loop Fast Flux 10¹⁵ n/cm²-s
- Redesign and Reinstallation of the Irradiation Test Vehicle
- Hot Cell Use and Need Determination
- Hot Cell PIE Equipment Upgrade
- Reactivation of Pressurized Water Loop
- Installation of "Rabbit" System
- Fuel Fabrication Facility Equipment Upgrades
 - Existing ATR fuel
 - Uranium-molybdenum production capability

Materials and Fuels Complex

INL History in Fuels Development

- Development and qualification of fuels for EBR-I, EBR-II, and the IFR concept
- DBA testing in SPERT, PBF, & LOFT model LWR fuel behavior under DBAs and severe accidents
- Development and licensing of reducedenrichment fuels for research reactors
- Testing and evaluation of a variety of fuel types, including metallic, oxide, nitride, carbide, and dispersion fuels
- Expertise in fuel fabrication, irradiation performance, safety analysis and safety experimentation
- Spent fuel dry storage technology

Postirradiation Examination Capabilities

- Neutron radiography
- Element/capsule NDE
 - Visual examinations
 - Physical measurements
 - Eddy Current Oxide Layer Test
 - Fission/activation product distributions
- Laser puncturing and gas sampling
- Sample cutting and preparation
- Metallography (microhardness measurements)
- Scanning electron microscopy

Analytical Chemistry Laboratory

Capabilities

- Analytical chemistry of fission products, actinides, and other radionuclides in various matrices
- Shielded hot cells
- Gloveboxes
- Fuel casting laboratory
- NDA laboratory

Summary of INL Capabilities

- Advanced Test Reactor
 - Multiple test positions and configurations available
 - High flux and large volume test positions
 - Long history of irradiation tests and future plans
- Post Irradiation Examinations
 - Fuel development experience
 - HFEF destructive and nondestructive examinations
 - Analytical laboratory support

