Neutronic Simulation of NRAD Reactor LEU Conversion Start-Up Tests

John D. Bess Reactor Physics Analysis and Design

Lee M. Montierth Criticality Safety Engineering

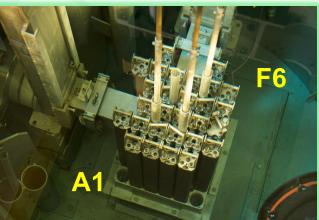
ICSBEP/IRPhEP

TRTR/IGORR 2010 Joint Meeting September 19-23, 2010

This presentation was prepared at Idaho National Laboratory for the U.S. Department of Energy under Contract Number (DE-AC07-05ID14517)

Idaho National Laboratory

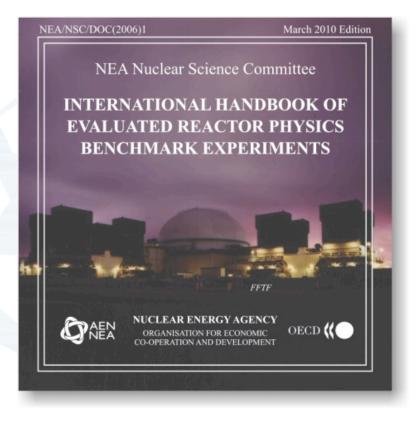
Objective


- Neutronic benchmark development in support of evaluating the freshcore reload of the NRAD TRIGA reactor with LEU-Er-Zr-H fuel.
 - Acknowledgments
 - Idaho National Laboratory Staff
 - General Atomics
 - Collaborative support from GTRI, RERTR, TRIGA International, CERCA, IRPhEP

Neutron Radiography (NRAD) Reactor

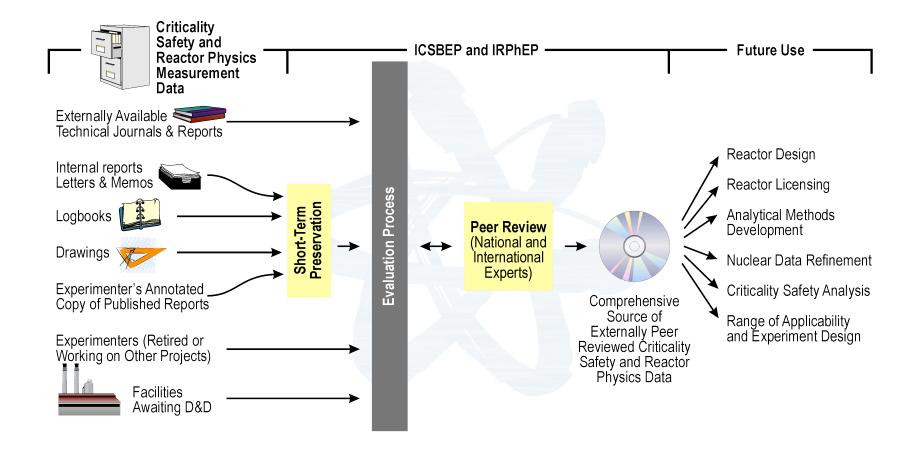
- 250 kW TRIGA Mark II
- Conversion-type
- Located at INL
 - Former PRNC 2-MW reactor
- 60 U(30/20)-Er-Zr-H rods
- 12 graphite reflectors
- 3 control rods
- 2 neutron radiography beam lines
- Empty positions for in-core experimentation
 - Part of Hot Fuels Examination Facility (HFEF)

NRAD LEU TRIGA Start-Up Tests

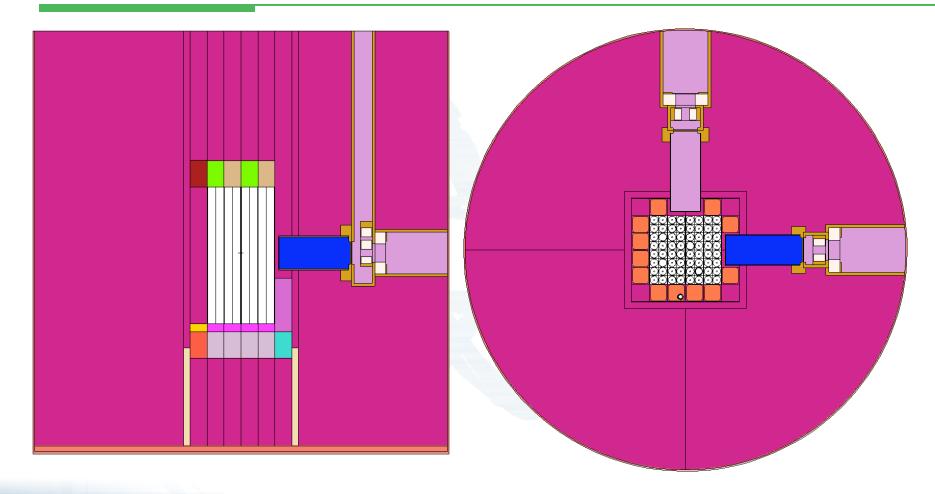

- March 9 June 7, 2010
- Fuel loading approach to critical
- Initial critical
 - 56 fuel rods
 - Rod worths, ER, SDM
- Operational core
 - 60 fuel rods
 - Critical, rod worths, ER, SDM

- Calorimetric power calibrations
 - 100, 200, 250 kW
- Full power operation
 ER
- Graphite reflector movements
- Radiography beam characterization performed after start-up tests were completed

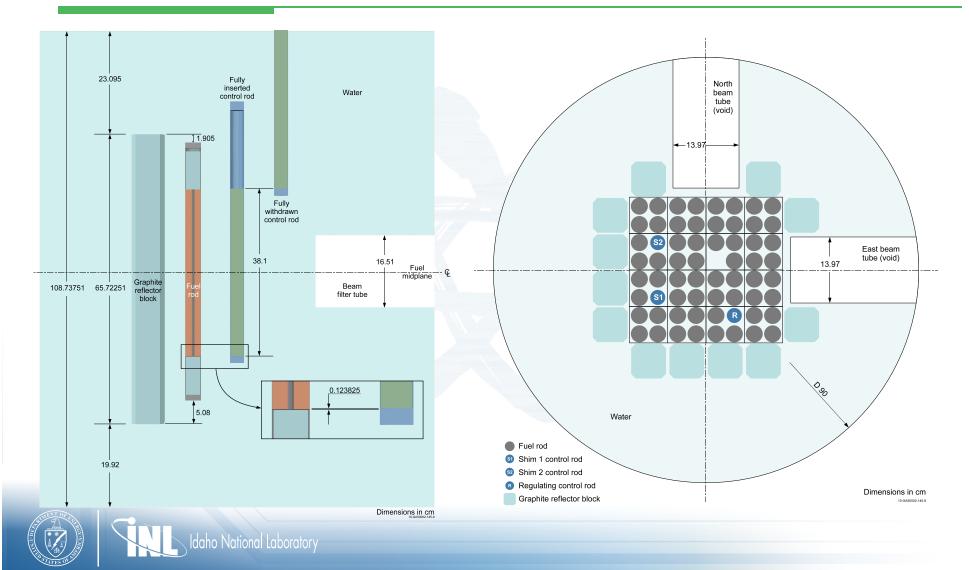
International Handbook of Evaluated Reactor Physics Benchmark Experiments


March 2010 Edition

- 15 Contributing Countries
- Data from 43 Experimental Series performed at 24 Reactor Facilities
- Data from 40 out of the 43 series are published as approved benchmarks
- Data from 3 out of the 43 series are published in DRAFT form
- Handbook available to OECD member countries, all contributing countries, and to others on a case-by-case basis



Summary of Benchmarking Process



Development of a Very Detailed Model

Benchmark Model

Primary Uncertainties

- Fuel Parameters
 - ²³⁴U content
 - ²³⁶U content
 - Hydride homogeneity
 - Erbium content
 - Hafnium content
- Stainless Steel Cladding
 - Composition
 - Impurities

- Water Saturation of Graphite Blocks
 - 30 vol.% theoretical saturation limit
 - Largest single contributor
- Total Experimental Uncertainty
 - ±0.0027 Δk (~0.3%)

Criticality Calculation Results - I

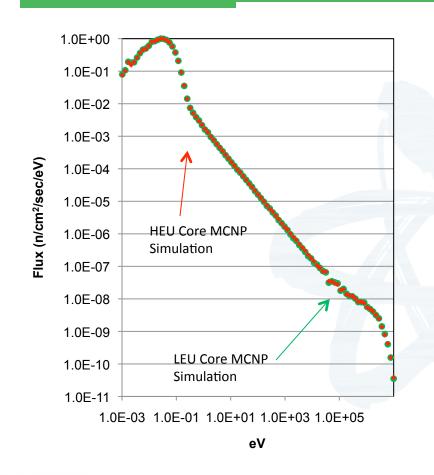
Experiment k_{eff} + Simplification Bias = Benchmark k_{eff}

 $1.0000 + 0.0013 = 1.0013 \pm 0.0029$

Analysis Code	Neutron Library	Cal	$C - E_{(\infty)}$		
		k _{eff}	±	σ	$\overline{E}^{(70)}$
MCNP5	ENDF/B-VII.0	1.00996	1.00996 ± 0.00007		0.86
	JEFF-3.1	0.98541	±	0.00007	-1.59
	JENDL-3.3	1.00734	±	0.00007	0.60
KENO-VI	ENDF/B-VII.0 (238-group)	1.01278	±	0.00007	1.15

Criticality Calculation Results - II

- There is a computational bias of \$1.15 ± 0.02 using MCNP5 and ENDF/B-VII.0.
- Simplifications to the model provide only an additional \$0.17 ± 0.01.
- Analysis is most sensitive to the thermal scattering treatment, S(α,β), for hydrogen in ZrH.
 - Swap S(α , β) in JEFF-3.1 with ENDF/B-VII.0
 - \$3.03 ± 0.03
 - Remaining difference between neutron data
 - \$0.27 ± 0.03



Reactor Physics Calculation Results

Worth Measurement	Experimental (\$) σ ≈ 5% (est.)		Detailed Model (\$)			Simple Model (\$)			
Graphite Block C1	-0.41	±	0.02	-0.39	±	0.01	-0.37	±	0.01
Graphite Block D1	-0.44	±	0.02	-0.39	±	0.01	-0.41	±	0.01
Graphite Block F4	-0.46	±	0.02	-0.33	±	0.01	-0.32	±	0.01
Graphite Block A5	-0.17	±	0.01	-0.16	±	0.01	-0.14	±	0.01
Fuel Cluster B5	-0.73	±	0.04	-1.22	±	0.02	-1.19	±	0.02
Excess Reactivity	1.18	±	0.06	1.20	±	0.02	1.20	±	0.02
Shutdown Margin	-7.06	±	0.35	-7.15	±	0.09	-7.17	±	0.09
Shim Rod 1	-2.80	±	0.14	-2.70	±	0.04	-2.70	±	0.04
Shim Rod 2	-2.85	±	0.14	-2.35	±	0.03	-2.40	±	0.03
Reg Rod	-2.59	±	0.13	-2.47	±	0.03	-2.47	±	0.04
$\beta_{eff} \sim 0.0071 \qquad \beta_{eff} \sim 0.0075$									

Idaho National Laboratory

Beam Line Characterization

- Evaluate quality of East radiography beam
 - Foil irradiations (±5%)
- Cd ratios with Au-Foils
 - HEU Core = 1.99
 - LEU Core = 1.81
- Cd ratios with In-Foils
 - Both Cores = 2.98
- Core conversion has not impacted radiography quality

Data courtesy of Chad Pope at INL

Lessons Learned

- Computational models are only as good as the data and physics you use
 - Need to evaluate cross section data
- Complete characterization of the fuel and reflectors is essential to quantifying their worth
 - You pay the price for accuracy
- Just because you can't model it perfectly, doesn't mean the reactor won't function
 - Computational analysis is a tool, not the solution

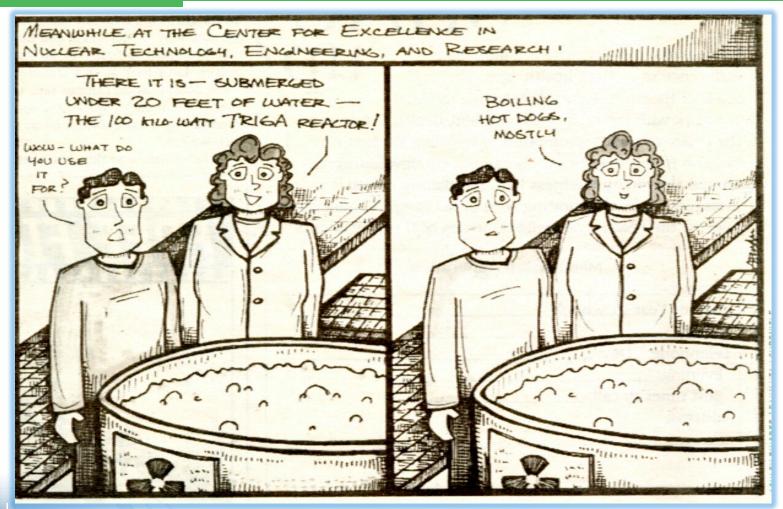
Future Work

- Experimental
 - Determine water saturation in graphite
 - Perform additional reactor physics experiments
- NRAD Operations
 - Modify core with four new fuel elements and four graphite elements

- Add pneumatic transfer experiment capabilities
- Benchmark
 - IRPhEP workgroup meeting in Oct 2010
 - March 2011 Handbook
 - Evaluate additional reactor physics experiments and modified core configurations

Conclusions

- Uncertainty
 - Water saturation of graphite (to be determined)
 - Fuel element composition
- Biases
 - Simplification are negligible
 - There is an absolute computational bias in k_{eff} but not ρ


- Reactor Physics
 - Good agreement between most measurements and calculations

Path Forward

- Additional experiments and analysis in support of an operational core
- Additional ICSBEP/ IRPhEP evaluations

Questions?

© 2002 Ashley Pingree Lewis

Extra Slides

What is a Benchmark?

- Merriam-Webster
- "a point of reference from which measurements may be made"
- "something that serves as a standard by which others are measured or judged"
- "a standardized problem or test that serves as a basis for evaluation or comparison (as of computer system performance)"

- An ICSBEP Benchmark Report has Four Major Sections
 - 1.0 Detailed Description
 - Compilation of All Known Available Data Regarding the Experiment
 - Try to Provide a Clear Idea of the Experiment Purpose and Procedure
 - Note Any Inconsistencies in Available Data
 - Essentially this Section Acts as a Means of Preserving Pertinent Available Data for the Experiment

- An ICSBEP Benchmark Report has Four Major Sections
 - 2.0 Evaluation of Experimental Data
 - Uncertainty Assessment of Experiment Parameters
 - Experimental Measurements
 - Temperature, Position
 - Geometrical Properties
 - Shape, Amount
 - Compositional Variations
 - Density, Material Abundance
 - Use Best Engineering Judgment and Practices to Account for Unknown Experiment Parameters
 - An Overall Uncertainty is Quantified

- An ICSBEP Benchmark Report has Four Major Sections
 - 3.0 Benchmark Specifications
 - Provide Sufficient Information to Justify and Construct a Calculational Model that Best Represents the Experiment
 - Justify and Quantify Simplifications in the Model Compared to the Physical Experiment
 - Bias or Correction Factor
 - Provide Expected Eigenvalue for the Benchmark
 - Typically k_{eff} = 1.0000
 - Another User Should Be Able to Model the Benchmark Completely without Any Other Section!

- An ICSBEP Benchmark Report has Four Major Sections
 - 4.0 Results of Sample Calculations
 - Summary of Calculated Results for Different Computer Codes and Cross-Section Data using the Benchmark Model(s)
 - Appendices
 - Any Additional Information Pertinent to the Benchmark
 - Input Decks for Computer Codes
 - Calculations
 - Photos or Scanned Documentation

International Reactor Physics Experiment Evaluation Project (IRPhEP)

- Focus to collect data regarding the numerous experiments in support of nuclear energy and technology performed at research laboratories
- Experiments represent significant investments of time, infrastructure, expertise, and cost that might not have received adequate documentation
- Measurements also include data regarding reactivity measurements, reaction rates, buckling, burnup, etc., that are of significant worth for current and future research and development efforts
- http://irphep.inl.gov/

Evaluation Included in IRPhEP Benchmarks

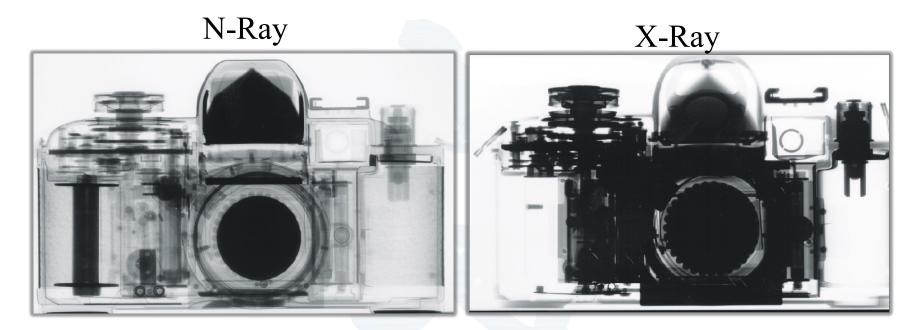
- Critical/Subcritical
- Buckling/Extrapolation
- Spectral Characteristics
- Reactivity Effects
- Reactivity Coefficients
- Kinetics Measurements
- Reaction-Rate Distributions
- Power Distributions

- Isotopic Composition
- Miscellaneous

- **Extensive Peer Review**
 - Evaluator(s)
 - Internal Review
 - Independent Review
 - International Workgroup Review

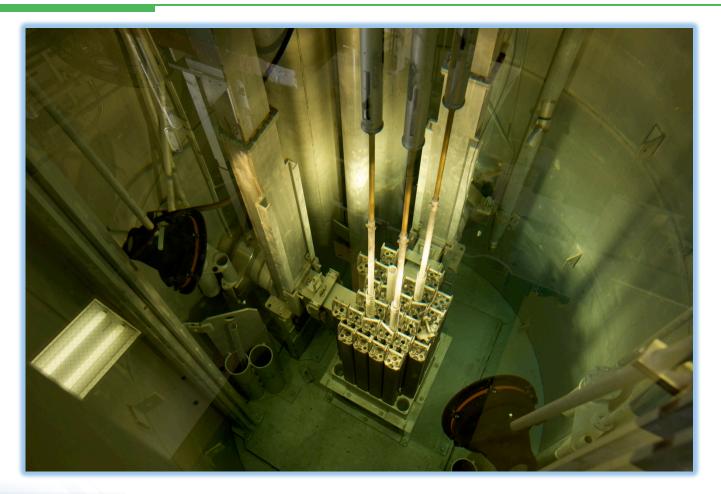
Perturbation Analysis

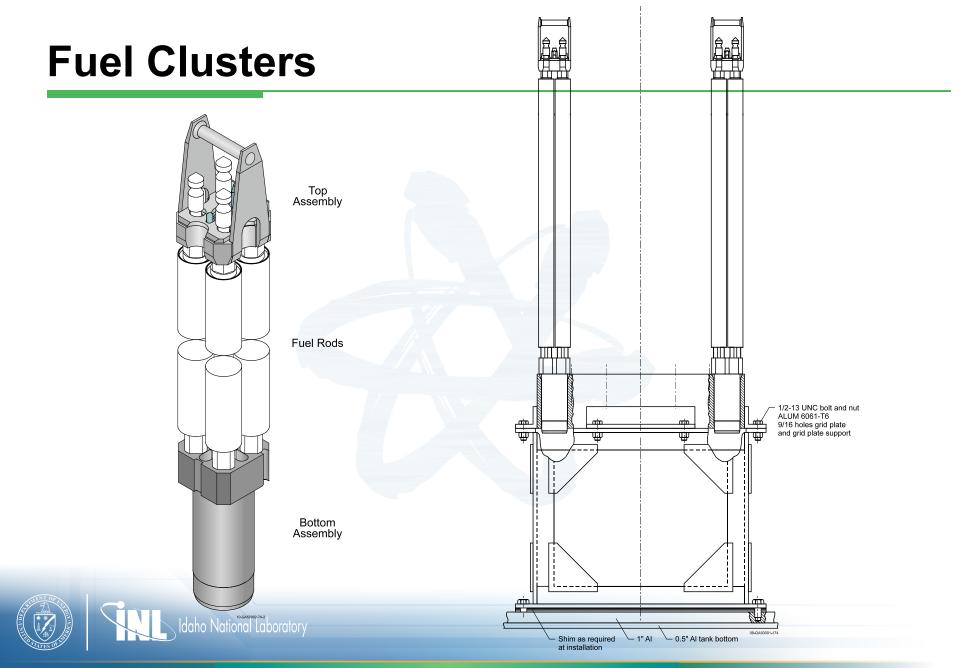
- Variation of parameters within published or assumed range of uncertainty
 - Manufacturing tolerances
 - Repeated measurements
 - Measurement limit
 - Bounding compositional requirements
- Sometimes the perturbation modeled is larger than the actual uncertainty, and is scaled back
 - Uncertainty is on the same order of magnitude as the statistical uncertainty in the computation

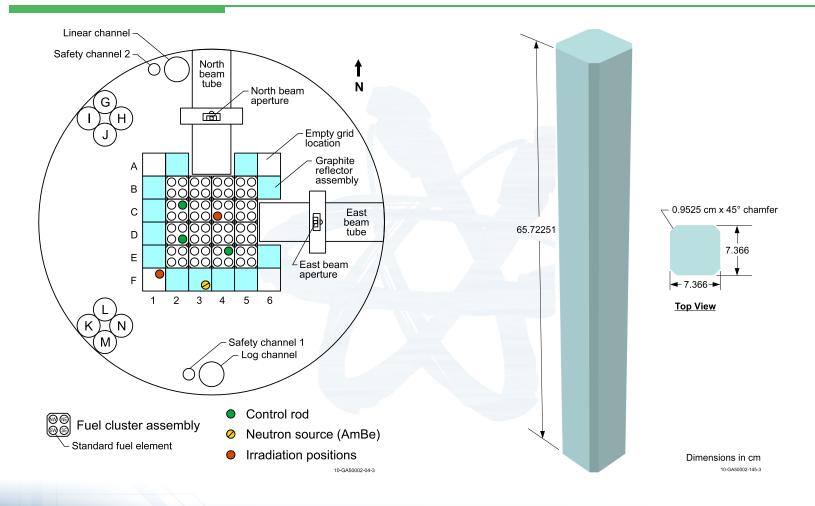


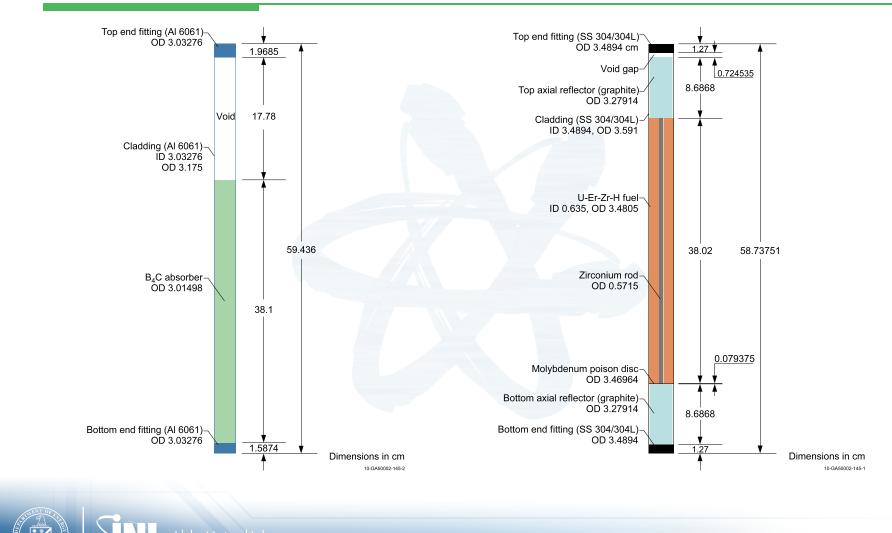
Bias Assessment

- The Effect of simplifying the model is assessed by comparison of the detailed model to the simple model
- Some simplifications are anti-correlated
 - Their effects must be modeled individually and as a whole to understand the complete result
- Sometimes the bias is smaller than the statistical uncertainty
 - The bias is assumed negligible
 - The uncertainty is included in the overall uncertainty of the benchmark model

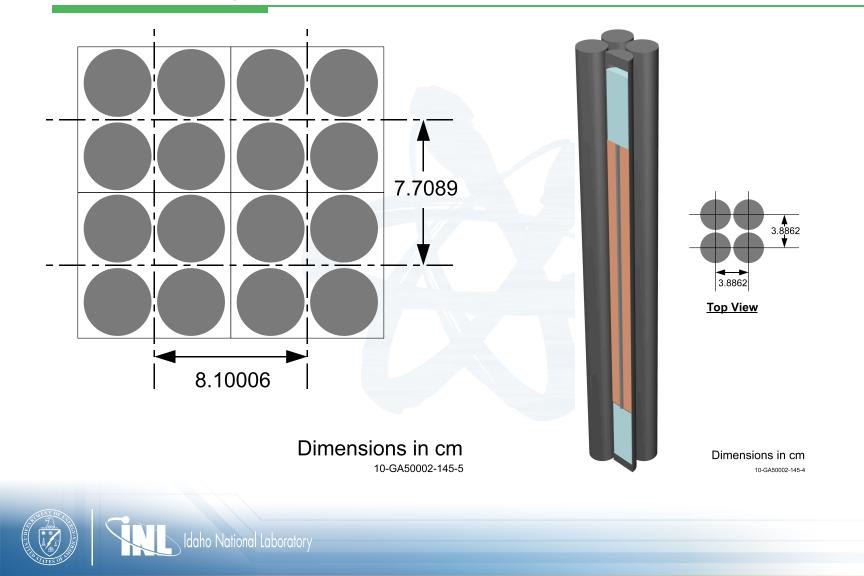

Comparison of N-Ray and X-Ray Imaging


Atominstitute of the Austrian Universities, http://www.ati.ac.at/

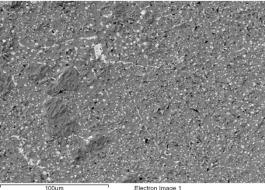

Photograph of NRAD Tank

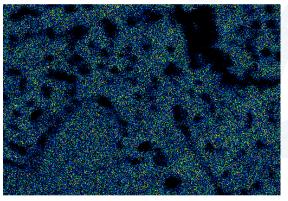


Graphite Reflectors

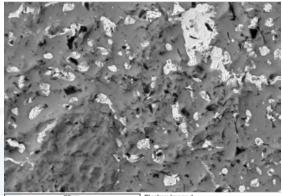


Control and Fuel Rods

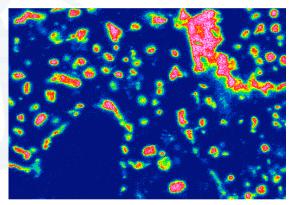



Idaho National Laborator

Assembly and Fuel Pitches



"Typical" Fuel Micrographs



Zirconium_WD

Electron Image

U Ma1

