Overcoming Challenges in the ZED-2 Reactor Safety Analysis

TRTR Conference G.B. Wilkin and K.R. Kumar 2010 September 19-24

ZED-2 50th Anniversary

- First criticality on 1960 September 7
- 50 years of safe operation achieved two weeks ago
- CNS sponsoring a Technical Workshop on critical facilities and small reactors
	- –2010 November 1-3, Ottawa, Ontario, Canada
	- –CNS website: http://www.cns-snc.ca/events
	- –Still accepting registrations
	- –Tour of ZED-2 on November 3 at CRL

ZED-2 Overview

- Cylindrical vessel in which fuel rods are hung vertically
- Pump D_2O moderator into vessel to take reactor critical
- Low power, ~200 W maximum
- Primary shutdown mechanism is moderator dump through 3 lines (1.5 ft dia) back to the dump tanks in the basement
- 8 to 12 standby absorber rods also drop but are not credited in the safety case

ZED-2's Versatility & Variability

- Can accommodate mixed fuel types in a variable number of fuel rods each with or without CANDU-type or ACR-type channels
- Channel coolants can be light or heavy water, or air, and can vary from channel to channel

–Some CANDU-type channels can be heated

- Lattices can be square or hexagonal with continuously variable lattice pitch
- Other items can also be placed in the core such as
	- –Solid neutron absorbers, self-powered and foil-activation neutron flux detectors, and soluble neutron poisons in the heavy water
- Heavy water purity continuously decreases with time

Defence in Depth

ACR LEU Fuel Lesson

• Addendum added to the ZED-2 FSAR to accommodate LEU fuel for ACR experiments

–Final Safety Analysis Report (supports the license)

- Limits placed on LEU fuel loading, minimum lattice pitch, and maximum reactivity insertion
- Did not include indicated-to-actual power difference
	- –When the power difference was assessed, the safety case failed for smallest allowed lattice pitch
	- –ZED-2 was shut down by AECL management
	- –Errant case "fixed" by reducing safety-case conservatism
	- –Operation resumed under a 2nd addendum to FSAR
		- Special CNSC permission was required for each core load
- Clearly a different approach was required to avoid endless revisions to the FSAR for new experiments $\overleftrightarrow{ }$ and F and F

Summary of Reasons for FSAR Upgrade

- Last major rewrite of FSAR in 1985
- Include and quantify safety margins
- Explicitly include impact of the difference between indicated and actual core power
- Include uncertainty analysis
- Challenge: to select an appropriate set of controlled parameters that provides a robust safety case without compromising the facility's versatility while at the same time avoiding endless revisions to the FSAR
- Many other upgrades performed at the same time
- This presentation is confined to the safety analysis

Reference Accident Transient (Design Basis Accident - DBA)

- Indicated power is at the trip condition (200 W)
- Core parameters at their LCO limits
	- Limiting Conditions for Safe Operation
- Step reactivity insertion:

 $ρ = β$ (U235)+1 mk = 7.984 mk $(1 \text{ m} \cdot k = 10^{-3} \text{ k} = 100 \text{ pcm})$

- U235 is the only fissioning nuclide
- One dump valve fails to open and absorber rods are not credited
- Acceptance Criteria (dose to staff and fuel temperature) depend on total energy generated
- All other credible LOR accidents are bounded by this transient
- Other fissioning nuclides are bounded by this transient

Reference Transient and E_{AC} Equations (LCO Parameters)

$$
\frac{dn(t)}{dt} = \frac{\rho(t) - \beta_{U235}}{\Delta} n(t) + \sum_{i} \lambda_i C_i(t) \qquad P(t) = \boxed{P_A} n(t), \quad n(0) = 1
$$

 $\rho(t) = \rho_{IN}(t) + \rho_{OUT}(t)$ $\rho_{IN}(t) = \beta_{U235} + 1 \text{ mk, ramp } 0 \rightarrow 0.1 \text{ ms}$

$$
\rho_{\text{OUT}}(t) = -\frac{LCR}{2} \left[\frac{1}{\left(H_{\text{ex}} - \Delta h(t') \right)^2} - \frac{1}{H_{\text{ex}}^2} \right] \qquad H_{\text{ex}} = \left[\frac{H_c}{H_c} \right] + D_{\text{ex}}
$$

$$
E = \int P(t)dt \qquad E_{AC} = \underbrace{M}_{AF} F_{fluxpeak} \Delta T C_{P} \qquad \Delta T = 100^{\circ}\text{C} - T_{0}
$$

 $E < E_{AC}$ \leftarrow Deposited Energy Acceptance Criterion

LCO Parameters

- Set of 6 parameters were selected as LCOs
	- –Based on reactor physics not physical parameters
		- The parameter values vary significantly with core loading and are calculated for each experiment
	- –A limit is specified for each parameter
	- –Maximum reactivity insertion:
		- $ρ = β_{EXPT} +1$ mk, limit: $ρ ≤ β_{U235} +1$ mk
		- Safety case using U235 bounds other fissionable nuclides
	- –Other 5 limits are fixed: LCR, fuel mass, critical height, neutron generation time, actual power at trip

 $-$ e.g., P_4 <700 W at P_1 = 200 W to address P_4 ≠ P_1

–Limit values are arbitrary but carefully chosen to satisfy the E_{AC} yet not unduly constrain experiments

Fixed Parameters

- The remaining parameters have fixed values
	- –Not calculated for each experiment
	- –Some parameter values are selected to bound experiments with additional margin
	- –Some parameters don't depend on the experiment
	- –Senior ZED-2 Physicist determines if any fixed parameters must be changed for a given experiment
		- Requires new safety case and CNSC acceptance

Uncertainty Analysis

- Uncertainty analysis performed on DBA
	- –All 6 LCO parameters at the license limits, including 1σ standard errors (highly unlikely)
	- –Fixed parameters included added margins
- Result was that a 98.8% probability that the deposited energy will not exceed E_{AC}
- Very high probability that E_{AC} will not be exceeded at license limits

Quantifying Safety Margins

- Actual fuel *T* explicitly calculated during transient
- Fuel *T* safety limit is 100°C (initial fuel *T* is 50°C)
- Quantifies the margins in typical experiments between the actual fuel *T* and the safety limit

Summary of New Safety Case

- Establishes Defense in Depth philosophy –Introduces operating and safety margins
- Quantifies the very large actual safety margin
- Robust without compromising ZED-2 versatility
	- –Can accommodate virtually any core loading without requiring a revision and CNSC approval of the licensing documents

• Addresses all other shortcomings in previous safety case

- –Includes a rigorous uncertainty analysis
- –Explicitly accounts for indicated-actual power discrepancy
- –Evidence provided that the DBA is in fact bounding

Thank You!

Reference Transient is Bounding

(Reactivity Inserted and Rate)

Reference Transient is Bounding (Fissioning Nuclides)

Reference Transient is Bounding (Actual Power at Trip)

• Actual power at trip (200 W indicated power):

$$
P(\text{W}) = F7 \times \frac{202.5}{180.9} \times 4.554 \times 10^7 \times \frac{200}{50} \times \frac{1}{F2} \times 1.602 \times 10^{-13}
$$

Note: 12.5% (1σ) standard error assigned to *P*

Prompt Neutron Generation Time (called 1/v insertion method or α -static method)

• From static perturbation theory

$$
\Lambda = \frac{\left(\Phi^*, \frac{1}{V}\Phi\right)}{\left(\Phi^*, \mathrm{F}\Phi\right)} \quad \text{and} \quad \Delta \rho = -\frac{\left(\Phi^*, \Delta M\Phi\right)}{\left(\Phi^*, \mathrm{F}\Phi\right)}
$$

Setting $ΔM=Δα/v$ and solving for $Δ$ yields

$$
\Lambda = \lim_{\Delta \alpha \to 0} \left(-\frac{\Delta \rho}{\Delta \alpha} \right) = -\left(\frac{\partial \rho(\alpha)}{\partial \alpha} \right)_{\alpha=0}
$$

• MCNP4C ACODE option is used to calculate several values of $\rho(\alpha)$ by repeatedly solving *k*-eigenvalue equation with α constant:

$$
\frac{1}{k} \mathbf{F} \Phi = \left[\mathbf{M} + \frac{\alpha}{\mathbf{v}} \right] \Phi
$$

Uncertainty Analysis

- 17 input parameters set at reference values: Λ, ρ_{IN}, P_A , *LCR*, H_C , (β_i, λ_i, i=1,6), each with a 1σ uncertainty
	- $-$ Uncertainty in *M* is included in the E_{AC}
	- Remaining parameters at their fixed values
- Repeatedly solve transient randomly sampling all 17 distributions each time
- Produces a log-normal distribution – linear normal probability plot of ln(*E*), R=0.9983
- 98.8% of the $ln(E)$ distribution is less than $ln(E_{AC})$
- Very high confidence that E_{AC} will not be exceeded in the DBA with all parameters at their LCO limits or fixed values, including uncertainties and margins

Fixed Parameters

$$
\frac{dn(t)}{dt} = \frac{\rho(t) - \left(\beta_{U235}\right)}{\Lambda} n(t) + \sum_{i} \lambda_i C_i(t) \qquad P(t) = P_A n(t), \quad n(0) = 1
$$

 $\rho(t) = \rho_{IN}(t) + \rho_{OUT}(t)$ $\rho_{IN}(t) = \beta_{U235} + 1 \text{ mk, ramp } 0 \rightarrow 0.1 \text{ ms}$

$$
\rho_{\text{OUT}}(t) = -LCR \frac{H_{\text{ex}}^3}{2} \left[\frac{1}{\left(H_{\text{ex}} - \Delta h(t')\right)^2} - \frac{1}{H_{\text{ex}}^2} \right] \qquad H_{\text{ex}} = H_c + [D_{\text{ex}}]
$$
\n
$$
E = \int P(t)dt \qquad E_{AC} = M \boxed{F_{\Delta H} F_{flu \text{seak}}} \Delta T \boxed{C_P} \qquad \Delta T = 100^{\circ} \text{C} - \boxed{T_0}
$$

$$
E < E_{AC}
$$

UNRESTRICTED / ILLIMITÉ 22

A AECL EACL