

Australian Government

PERFORMANCE INDICATORS FOR RESEARCH REACTORS

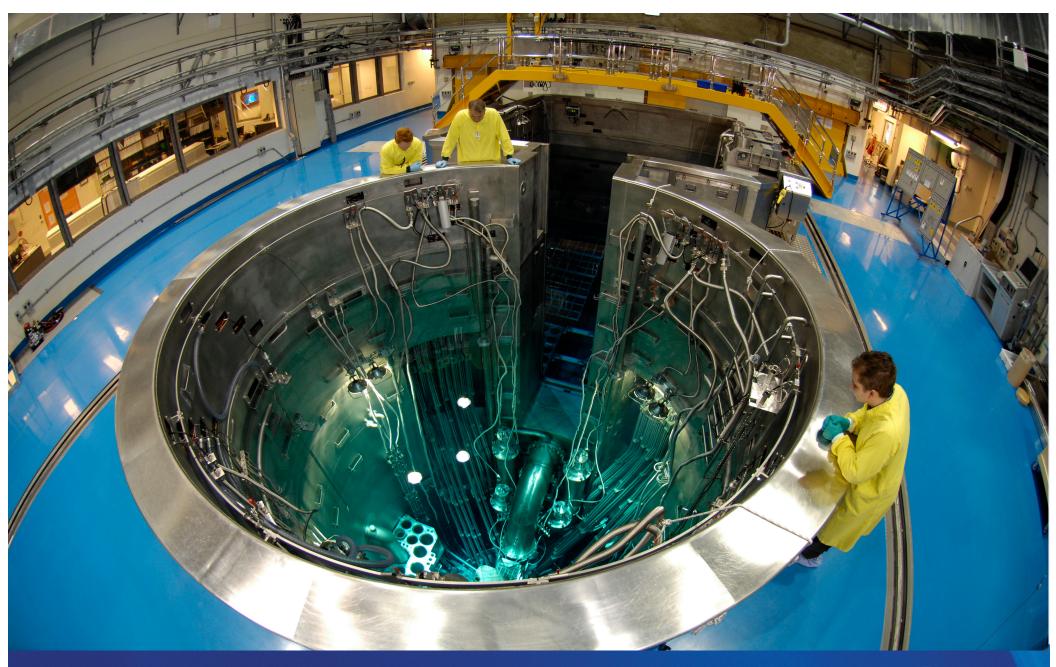
Greg Storr & Mark Summerfield

Performance What does it mean?

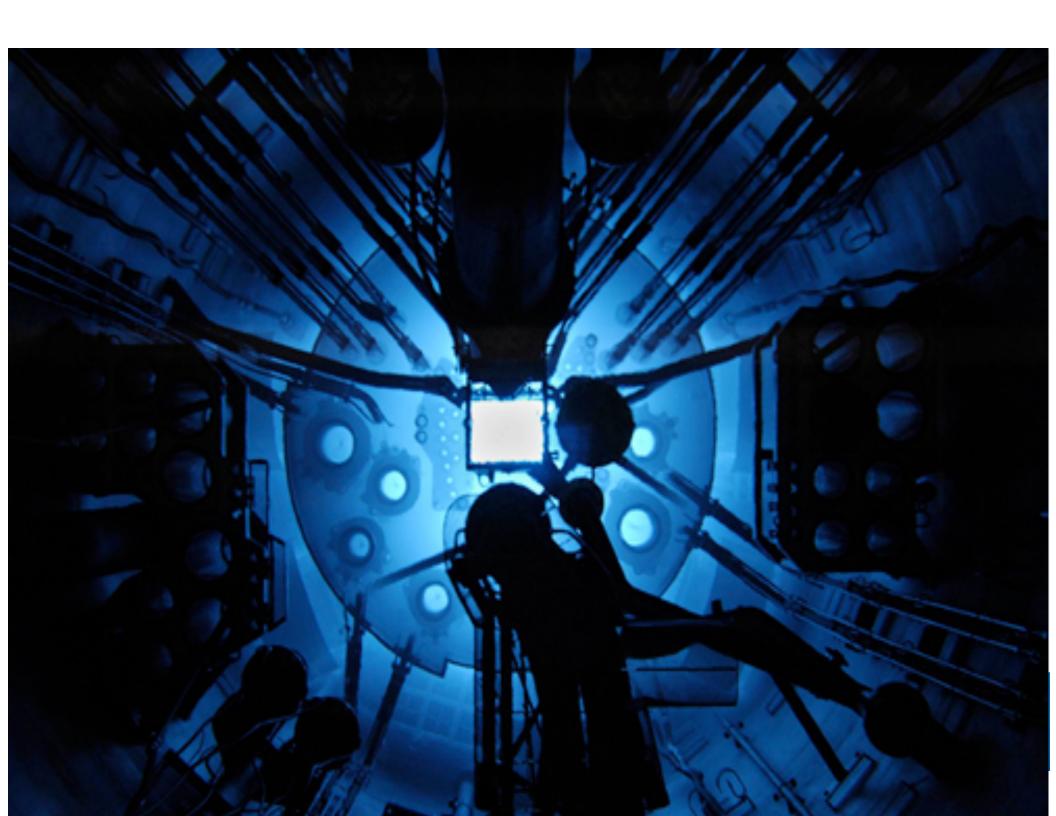
- Measuring how an activity is done
- Success or Failure
- Doing your best
- Living up to expectations
- "Going the extra mile"
- Receiving an ovation

Winning the U/11B football (soccer) premiership

Safe and well utilised facility



Measuring Performance


- > Winning
- How you played
- Personal best
- Team success
- Quantitative demonstration of success factors in a business
- U11Bs won 3-1in the Grand Final

Performance at OPAL

Project

Cost, Schedule, Licensing, Commissioning

Operation

Commissioning, Availability, Reliability, Utilisation

> Safety

Safety Performance Indicators

Culture Survey, Attitudes, Behaviours

increasing complexity

Safety Performance Indicators (SPIs)

- SPIs from Nuclear Power Plant Safety Events TMI, Chernobyl → drove regulation to performance measurement
- OPAL Operating Licence Condition Develop a set of SPIs to satisfaction of the CEO of ARPANSA
- Reference to CNRA/CSNI, IAEA, WANO NPP based

Research Reactors – guidance in this area not well developed

Guidance on Safety Performance

RRs are disparate in design, usage

Difficult to generalise

U11B CPR were beaten twice in the season by Kogarah Waratahs

Benchmarking is possible

International meetings and collaborations

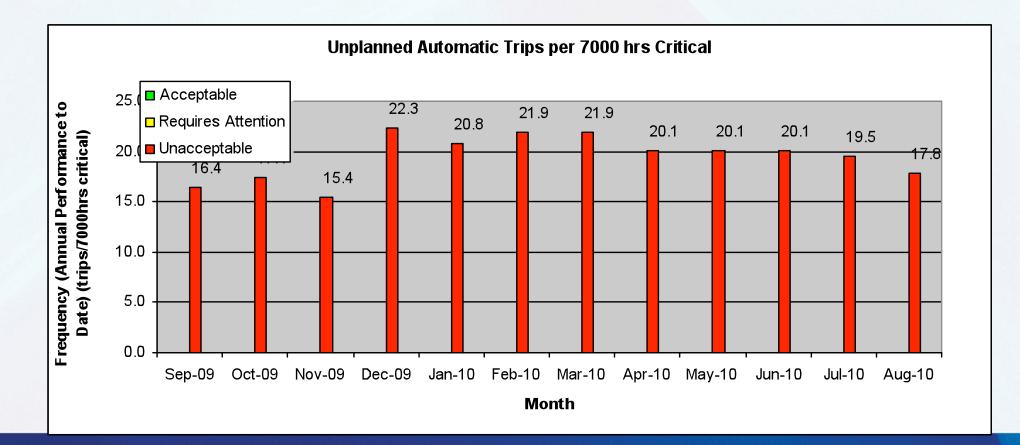
Research Reactor Code of Conduct

OPAL SPIs - Approach

o SPIs form part of a safety management system

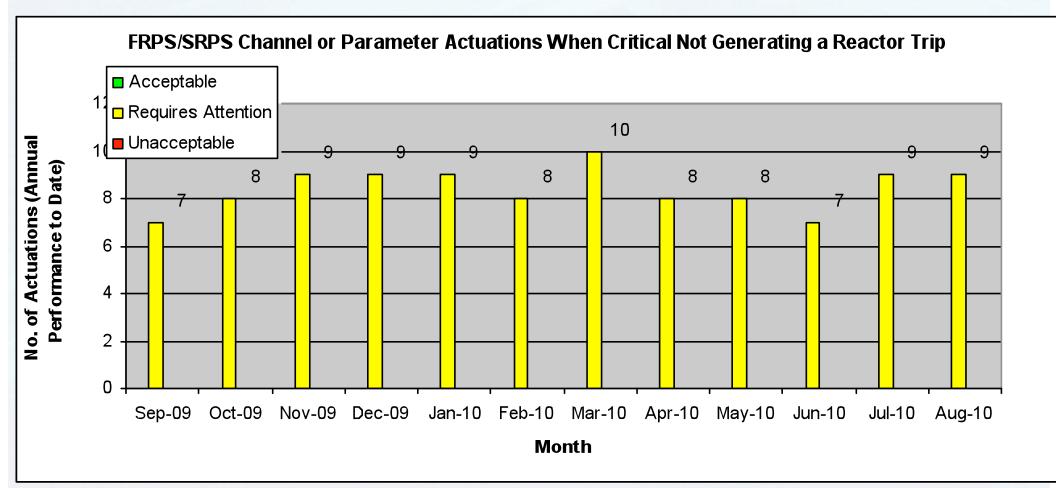
- o Considering a range of indicators will lead to insight
- o Early warning for deterioration in performance
- o Targets focus attention to drive improvement

o Benchmark – international comparison

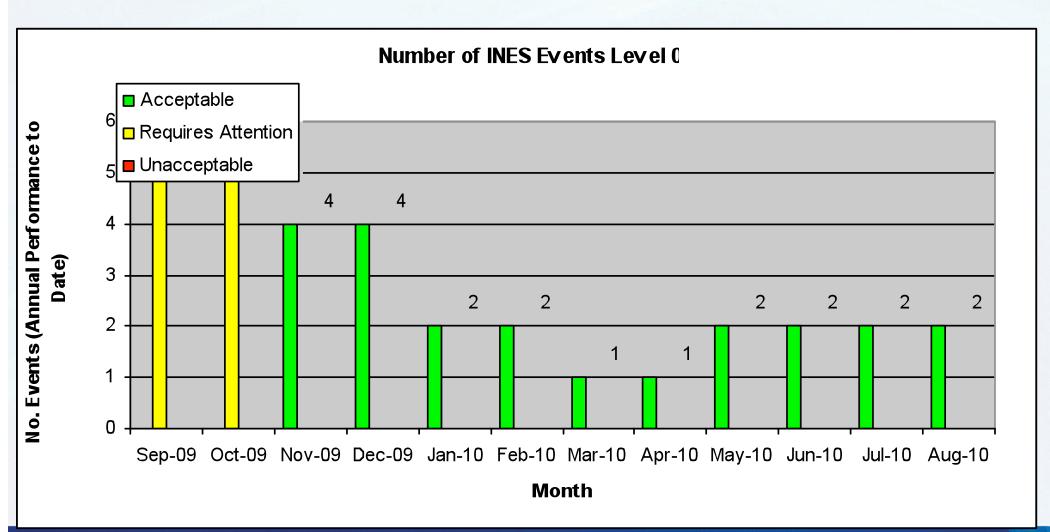

OPAL SPIs – attributes & areas

- Clear definition
- Easily understood
- Timely indication of safety degradation
- Reporting period allows timely corrections

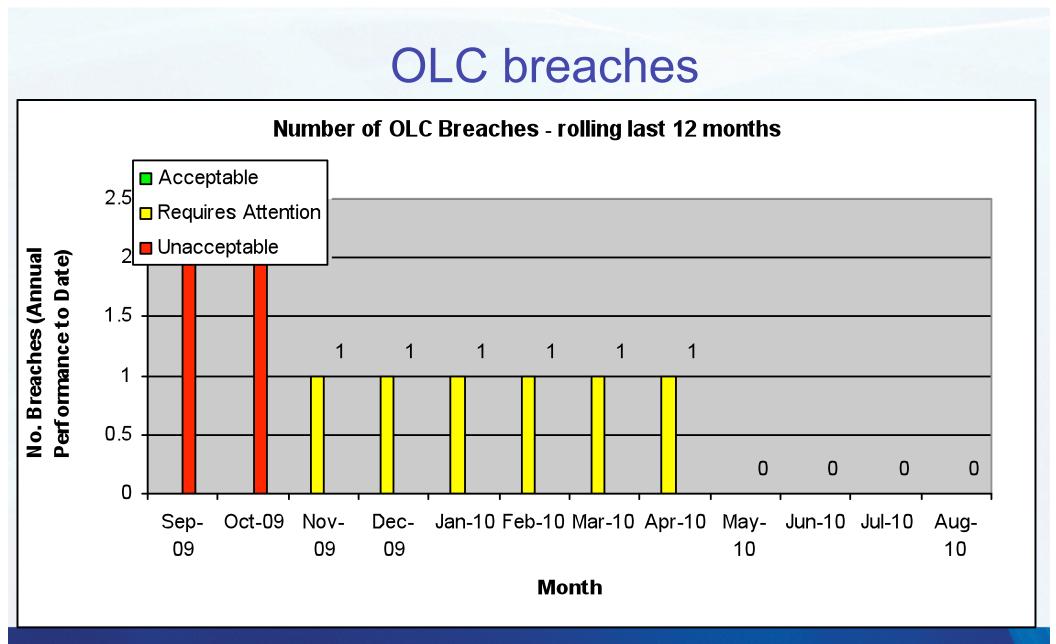
REACTOR SAFETY
RADIATION SAFETY
INDUSTRIAL SAFETY
SAFETY MANAGEMENT



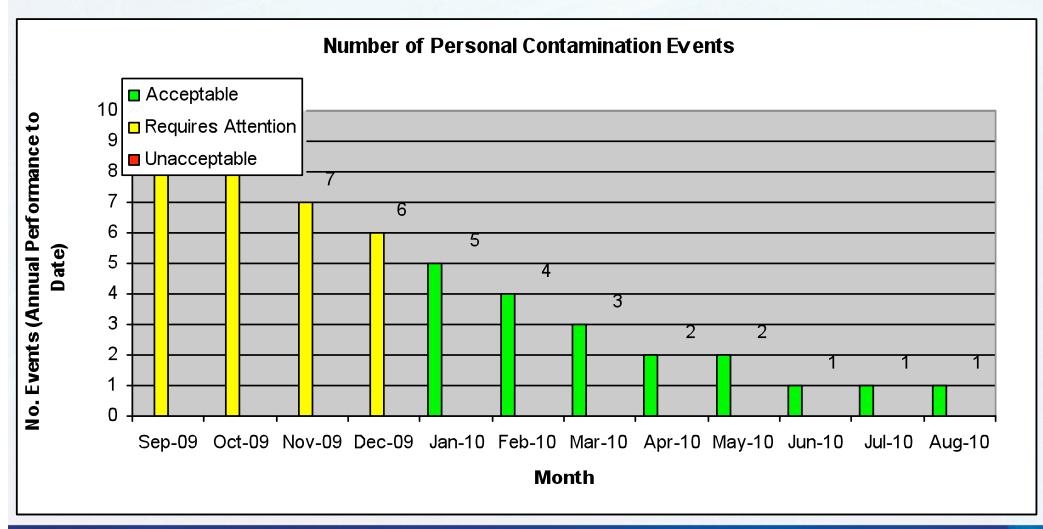
Unplanned Trips


GENSEO Nuclear-based science benefiting all Australians

Protection System



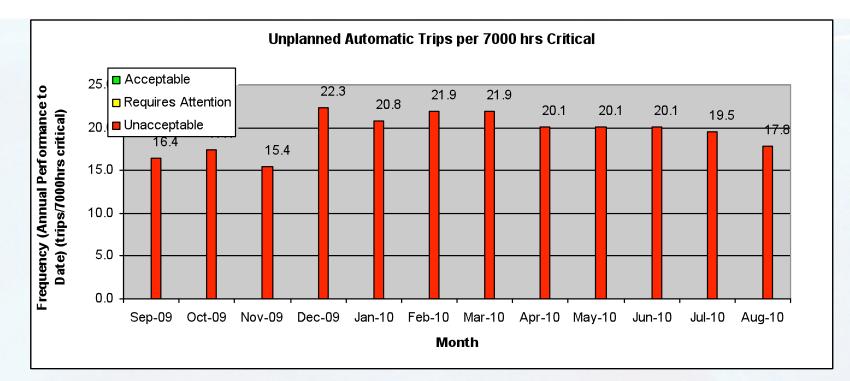
INES Level

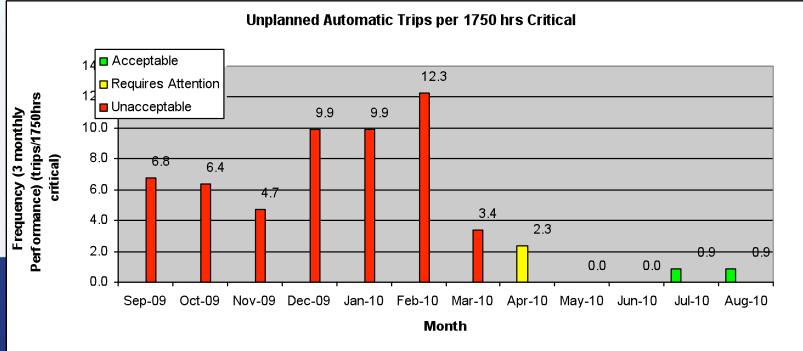


Ginsto Nuclear-based science benefiting all Australians

Ginsto Nuclear-based science benefiting all Australians

Staff contamination


Ginsto Nuclear-based science benefiting all Australians


Safety Performance Indicator		May 10	June 10	July 10	
Unplanned automatic trips per 7000 hrs critical	6	20.1	19.5	17.8	
Number of FRPS/SRPS actuations when critical not generating a reactor trip, rolling last 12 months	6	7	9	9.0	
Number of reportable events INES > 0, rolling last 12 months	0	1	1	1	
Number of INES events level 0, rolling last 12 months	4	2	2	2	
Number of INES level 0 or >0 with Human Factor as a principal cause rolling last 12 months		0.3 0.3		0.3	
Number of OLC breaches, rolling last 12 months	0	0	0	0	
Number of unplanned times a limiting condition entered, rolling last 12 months		30	32	29	
Number of times unavailability detected during OLC SR, rolling last 12 months		10	10	9	
Maximum monthly PCS coolant activity (µSv/hr)	1500	961	1155	1903	
Maximum individual effective dose mSv/yr, rolling last 12 months	<2	1.4	1.4	1.4	
Number of staff with annual dose exceeding 5mSv, rolling last 12 months	0	0	0	0.0	
Number of staff with annual dose exceeding 2mSv, rolling last 12 months	2	2 0 0 0.0		0.0	
Number of dose investigations required, rolling last 12 months	0	0	0	0 0.0	
Number of personal contamination events, rolling last 12 months		1	1	1	
Number of Actual Fires, rolling last 12 months		1	1	1	
Number of Lost Time Injuries, rolling last 12 months	0	3	3	3	
Number of internal BMS audits not completed to schedule.	0	0	0	0	
Number of corrective actions from external Quality/environment audits outstanding after 3 months		0	0	0	
Number of staff accredited for the control of reactor operations - minimum each month	>15	23	22	21	
Percentage of Cat 1 and Cat 2 maintenance plans in compliance	90	85	85	83	
Percentage of housekeeping inspections completed to schedule (%)	100	93.5	88.5	88	
Percentage of event reports open 1 month after event (%)	25	32	34	34	

OPAL SPIs - outcomes

- Using SPIs for about 2 years
- Overall SPIs have been useful
- Some SPIs may require redefinition
- Some targets may need to be reset
- "Leading" indicators required
- Possible change to 12 month rolling basis
- Review conducted by Nuclear Regulator
- More maintenance related indicators

tralians

Leading indicators

- AECL 7 leading and 7 lagging indicators
- Leading indicators
 - Self-assessments, Work Permit compliance
 - Observation and coaching,
 - Safety related system surveillance, Housekeeping tours
- Safety research* cause/consequence relationship may not be adequately captured
- Activities and Outcomes based indicators may be a better way to define[#]

Nuclear-based science benefiting all Australians

- * A. Hopkins, L. Harms-Righdhal, both in Safety science Vol 47, 2009
- # OECD, Guide on Safety Performance Indicators, 2003

Other indicators

- Variety of inputs and trending needed in an integrated management system to improve performance
- Investigations required to understand the nature of events and the underlying safety trends
- Operational performance

Australian Gover		ONF 005 OPAL Reactor Cycle Summary					
Operating Cycle	024	from	28/06/2010	to	08/08/2010		
Operating Cycle Da	ta	la des des destas. Se titus destas					
Total days in cycle		41					
Targeted EFPD	geted EFPD		33				
Scheduled days at power		36.13					
Date of refuelling	Date of refuelling		02/07/2010				
Time of reactor start-	up (first critical)		03/07/2010 12:33 AM				
Time of reactor shutd	lown		08/08/2010 3:03 AM				
Average power			18.19 MW				
Average heavy water	purity	97.8					
Days Operating							
	Cycle		Calendar year		Overall		
Days at power	34.5		177		686		
EFPD	31.4		160		611		
Reactor Availability		·····		l			
	Cycle		Calendar year		Last 12 Months		
Overall availability	84 %		81 %		76 %		
Planned availability	96 %		96 %		96 %		
Reliability	96 %		96 %		96 %		
Cold Neutron Source	e Availability	se e con					
	Cycle		Calendar year		Last 12 Months		
Availability at power	100 %		83 %		69 %		
Irradiations		gy 960-080;	A WARD HILF AND A				
Uranium plate irradiati	ons	104 plates (13 rigs)					
Tellurium Dioxide targ	ets	7	7				
Samarium Oxide targets		6					
Chromium targets	omium targets		4				
Other LRT targets		25	25				
ONAA targets	A targets		448				
NAA targets		47					
NTD silicon arrays		172					
otal irradiations		813					
Operational History	김 말은 가지 않는 것이 ?						
Cycle summary		Cycle 24 commenced on Monday 28th June 2010 with a maintenance and refuelling period. The reactor returned to nominal full power on Saturday 3rd July 2010 at					

Effective from 17 August 2010. Revision: 01 Approved by: General Manager, Nuclear Operations. Custodian: Leader, Nuclear Analysis Section. Hard copy uncontrolled: printed on 23 August 2010.

	51 51	approximately 0130hrs.					
		the reactor was automation off site electrical power d disturbance the Cold Neu restart was inhibited. The reactor returned to nomin	Operation continued until Wednesday 14th July at which time the reactor was automatically shutdown at 0334hrs due to ar off site electrical power disturbance. As a result of the power disturbance the Cold Neutron Source faulted and reactor restart was inhibited. The CNS fault was rectified and the reactor returned to nominal full power at 1847hrs on Thursday 15th July 2010. Operation continued until the end of the cycle.				
Unscheduled sh	utdowns	1	1				
OPAL Reactor (Action	Cycle Summary Compl	etion Position	Signature	Date			
Prepared by	Rodney Hall	Nuclear Analyst	hen	23/08/2010			
Checked by	George Braoudakis	Leader, Nuclear Analysis Section	AB	23/08/10			
Approved by	David Vittorio	OPAL Reactor Manager	Ar	23/8/10			
	6						

ONF 005 OPAL Reactor Cycle Summary Effective from 17 August 2010. Revision: 01 Approved by: General Manager, Nuclear Operations. Custodian: Leader, Nuclear Analysis Section. Hard copy uncontrolled: printed on 23 August 2010. Page 2 of 2

Other indicators

- Risk-based performance indicators
- Qualitative cultural indicators monitoring & tracking problematic
- Using PSAs for NPPs
- Model
 - Initiating events
 - Reliability of systems, trains, components
 - Mitigation potential of engineering systems
 - Mitigation potential of emergency actions
- Indicators impacting (a) hardware (b) personnel
- Review event reports & review reliability data*

* S. Chakraborty et.al. Risk based Safety Performance Indicators for Nuclear Power Plants, SmiRT, 2003

The Future

- OPAL workshop with Nuclear Regulator review and improve
- Staff engagement and input
- Discuss with other operators the possibility of a defined set of PIs for Research Reactors
- Investigate whether the Research Reactor Code of Conduct could be used as a vehicle for this

CONCLUSION Why did the CPR U11Bs perform so well?

Excellent training and coach Cohesive team Supportive club

Train and develop staff Build a culture that is aligned Management are supportive

Nuclear-based science benefiting all Australians