

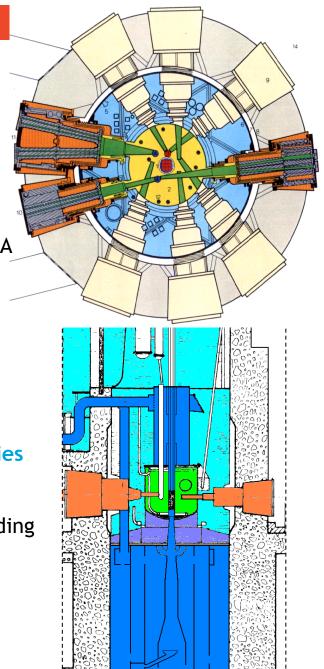
Reactivity insertions for the Borax accident in ORPHEE research reactor

September 2010, 1Xth / IGORR

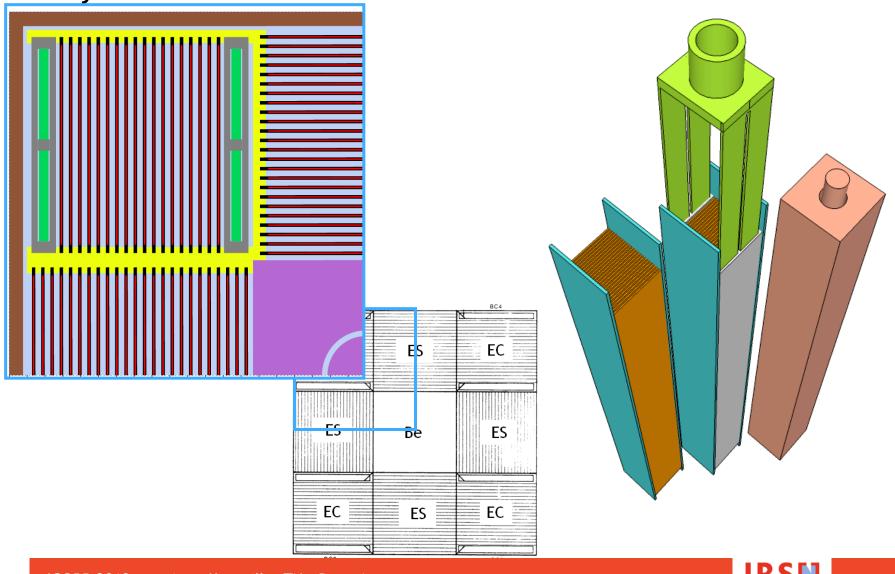
Yacine Chegrani*, Florence Gupta, Franck Bernard IRSN

Plan of the Presentation

- Introduction
 - Context
 - Safety demonstration provided by the utility
- IRSN assessment work on RIA
 - Validation process of IRSN-made ORPHEE model
 - Reactivity insertions evaluation
 - Discussion
- Conclusions



Context of the study


- Second decennial safety review of French reactor ORPHEE
 - Open core, pool type reactor built in 1986 by CEA
 - Neutron source reactor, 14MW
 - 8 square subassemblies, plate type fuel, aluminum clad, 93%
 - ≥9 neutron beam channels
 - 2 reflectors (Beryllium / heavy water)
 - > 2 cold sources, 1 hot source in the reflector

IRSN is the technical support to French public authorities

- Borax = severe reactivity insertion accident
 - Safety goal: Robustness of the containment building and pool
 - Safety assessment procedure includes:
 - Reactivity worth of initiating events
 - ➤ Thermal consequences on fuel plates
 - Pressure load on the reactor structures

Layout of the core and subassemblies

Safety demonstration for ORPHEE regarding RIA

- Two main identified initiating events
 - Control fork excessive withdrawal → ramp insertion
 - No possible ejection (downward flow)
 - Transient protected by scram thresholds and feedback
 - Experimental equipment failure → instantaneous insertion
 - Flooding of channels and probes by heavy water: reference case
 - → Less leakage in high flux area
 - Disappearance of channels structure: sensitivity case
 - → Less capture in high flux area
- Evaluation of the consequences
 - Reactor period
 - Higher than the experimental period for explosive borax (SPERT threshold at 4ms)
 - Innovative best-estimated thermal-hydraulic simulation
 - Melting temperature of aluminum not reached

Instantaneous reactivity insertions

Equipment	Reactivity worth in \$
Flooding of Cold Source 1	0.21
Flooding of Cold Source 2	0.19
Vaporisation of H2 in Cold Source 1	0.17
Vaporisation of H2 in Cold Source 2	0.11
Flooding of Hot Source	0.20
Flooding of light pipes	0.12
Flooding of 9 channels	0.45
Total of flooding and vaporisation effects	1.46 (reference)
Structure disappearance of 9 channels	1.22
Total of flooding and structure effects	2.90 (sensitivity)

Safety demonstration analysis by IRSN

Equipment	Reactivity worth in \$
Flooding of Cold Source 1s	0.21
Flooding of Cold Source 2	0.19
Vaporisation of H2 in Cold Source 1	0.17
Vaporisation of H2 in Cold Source 2	0.11
Flooding of Hot Source	0.20
Flooding of light pipes	0.12
Flooding of 9 channels	0.45
Total of flooding and vaporisation effects	1.46 (reference)
Structure disappearance of 9 channels	1.22
Total of flooding and structure effects	2.90 (sensitivity)

- Lines in green have been measured during start-up
 - Enough confidence in these values
- Lines in red have only been calculated in 1974
 - Diffusion calculations with TRIDENT code
 - → Worth making new calculations

Monte Carlo code MORET.5A1

- Developed for criticality studies by IRSN
 - Continuous energy cross sections
 - Geometrical model uses 3D basic closed shapes in networks
 - Single geometrical modules can be called several times in the geometry
 - Integration of an estimation of kinetic parameters
- Validation procedure set up for this study
 - Comparison between MORET5 calculations and available reference calculated data extracted from the safety report
 - > several levels of geometry simplification
 - Comparison with identical model in MCNP
- Kinetic parameters calculation
 - Reliable experimental values, used as complementary indicator

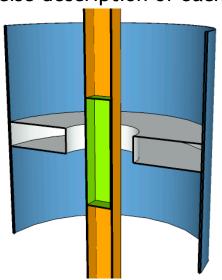
Validation against the simplified model from design calculations

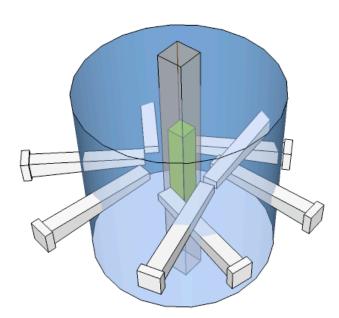
- Experimental equipment not simulated
- Two distributions of boron are applied

	No boron (MORET/ MCNP/TRIDENT)	Homogeneous (MORET/MCNP/TRIDENT)
Control fork worth in \$	40 / 40 / 46	38 / 39 / 42
Critical Height in cm (exp = 58.6 cm)	27 / - / -	50 / 50 / 47
Bcalc/Bexp	0.9 / - / -	0.9 / - / 1
Lcalc/Lexp	1.8 / - / -	1.7 / - / 4.5

Good general agreement

Validation against the available experimental data


Heterogeneous distribution of boron, as it is during operation


	Heterogeneous (MORET)
Control fork worth in \$	37
Critical Height in cm (exp = 58.6 cm)	58
Bcalc/Bexp	0.9
Lcalc/Lexp	1.8

- Better agreement
- Addition of experimental equipment improves L calculations
 - Dependent on the quantity of heavy water in high flux areas

Calculations of reactivity insertions

- Addition of 9 neutron beam channels
 - Equivalent volume at mid-plan
 - Precise description of each channel

	Reactivity in \$ (Ring - IRSN)	Reactivity in \$ (CEA 80's)	Reactivity in \$ (Precise - IRSN)
Flooding	2.2	0.5	2.1
Structure	0.4	1.22	0.7

Discussions

- CEA provided new results obtained with TRIPOLI 4 (Monte Carlo)
 - Validation against the measured cold source worth
 - 9 Channels reactivity worth evaluation (precise description)

	Reactivity in \$ (CEA)	Reactivity in \$ (IRSN)
Flooding	1.7	2.1
Structure	1.6	0.7

- Discrepancies have been addressed
 - Flooding: difference in heavy water reflector purity
 - Structure: difference in aluminum thickness

Conclusions

Equipment	Safety report	Up-to-date
Equipment	calculations (80's)	calculations
Flooding of Cold Source 1	0.21	0.25
Flooding of Cold Source 2	0.19	0.15
Vaporisation of H2 in Cold Source 1	0.17	0.12
Vaporisation of H2 in Cold Source 2	0.11	0.11
Flooding of 9 channels	0.45	1.65
Total of flooding and vaporisation	1.46	2.66
effects	1.10	2.00
Structure disappearance of 9	1.22	1.62
channels	1.22	1.02
Total of flooding and structure	2.9	4.3
effects	۷. /	7.5

- These new values pull the reactor period closer to the experimental threshold
- Safety report values will be updated
 - 2.9 \$ will become the reference case, and no sensitivity case will be considered
- Periodic examinations and replacement schedule of the neutron beams will be modified and tightened to reduce the risk of simultaneous failure

Thank you for your attention