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Why Study Radiolysis?

* Chemical methods for separation of fission products
from useful actinides are being both developed and
used for nuclear fuel recycling and high level waste

processing.

* New chemicals may need to be selected for greater
efficiency and lower costs.

* Viability of these methods and future selections
depends on understanding their behavior in intense
radiation fields of the fuel and products to be
separated. This radiation includes gamma, beta, and
alpha.



Key Recent Review

The Effects of Radiation Chemistry on Solvent
Extraction: 1. Conditions in Acidic Solution and
a Review of TBP Radiolysis.

Bruce J. Mincher, Gioseppe Modolo and Stephen
Mezyk, Solvent Extraction and lon Exchange,
27, 1-25, 2009.

“Only a few studies have been done using high
LET radiation”



Goals of Our Studies

e 1. Can we reproduce earlier results for alpha
radiolysis in agueous solutions (mostly from

1950’s)?
e 2. What are the complications and limits of
methods to be used?

* 3. Can radiolysis products from these methods
be identified and mechanisms and kinetics
evaluated?




Traditional Dosimeter — Fricke
(1927-35) Still the best method!

Oxidation of Fe’*to Fe3*in aqueous solution

[Fe3*] measured by spectrophotometer at 304
nm

Solution contains ferrous sulfate, 0.4 M
sulfuric acid.

Can be aerated or de-aerated.

G = reaction molecules per 100 eV absorbed =
15.5 for y radiation in aerated water solution.



Add boron (boric acid — H,BO;) and
irradiate with neutrons
Li

10g /
O(n,a) = 3840 barns
n ’
O —— @ > +94% 0.48 MeV Y-ray

8

Energy release is 2.79 MeV total




Experimental

Solutions made with varying boric acid
molarity, otherwise identical

Solutions placed in small sealed polyethylene
vials — but air not excluded

In Rotating Specimen Rack of TRIGA reactor

All conducted for 7 minutes at different power
levels.
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Dose Rate (kGy/h)

Converted using G = 4.2
(from McDonell and Hart)
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Dose Rate, kG/h-[B]

Alpha Dose Rate per [B] vs Reactor Power
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Effects Discovered

Increasing neutron rate or fluence increases alpha
radiolysis rate or amount.

Increasing boron concentration increases alpha
radiolysis rate

Gamma background contribution can be subtracted
successfully

Gamma background varies greatly with reactor run
status

Some correction likely for self absorption at high
boron concentrations



Basic Information

Neutron Flux: 1000 w = 3 x 10° n-cm2-sec!
Fluence (7 min) = 1.3 x 1012 neutrons

Alpha Dose rates in the region of a few kG/hr are
readily attained



Advantage of the TRIGA Reactor

Rotating rack — many specimens equal fluence
Readily controlled at low power

f low operating schedule — background can be
ower.
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Continued work

* Close work with NMR analysis to look at

products and effects on separation/extraction
reactions.

* Effects may not be the same as much studied
gamma radiolysis.
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