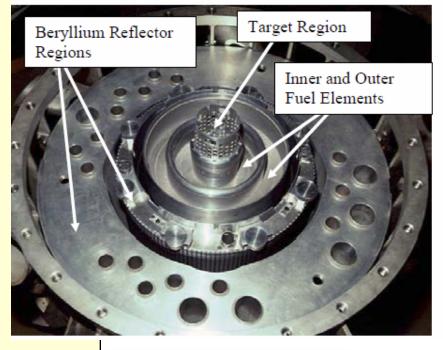
Reference (Axially Graded) Low Enriched Uranium Fuel Design for the HFIR

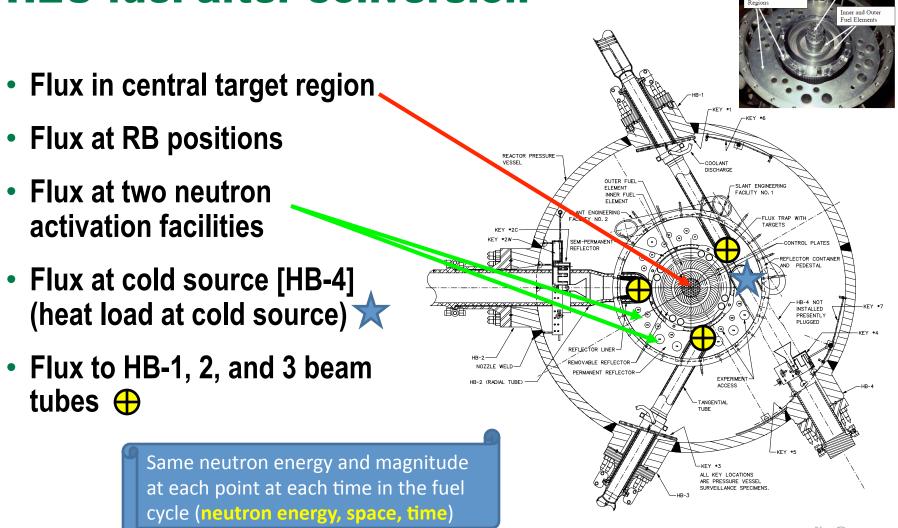
Trent Primm and Germina Ilas Oak Ridge National Laboratory (865) 574-0566 primmrtiii@ornl.gov

Presented at the TRTR 2010 Conference, Knoxville, TN September 20, 2010

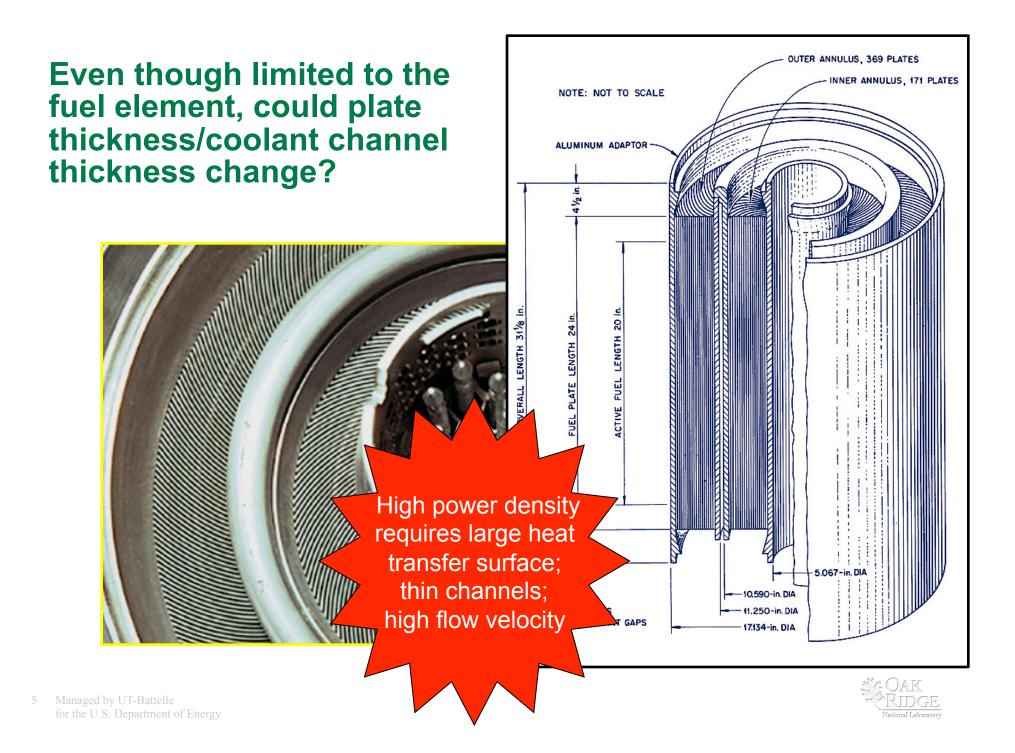
The goal of this presentation is to convince you that we're right


- Constraints that limited areas of study for HEU-to-LEU conversion
- The LEU fuel design
- Validity of physics studies
- Validity of thermal hydraulics studies
- Ability to fabricate LEU fuel

Full paper will be posted on IGORR site


Assumptions for HFIR LEU design studies were established and studies started in FY2006

- Build new reactor out of scope (\$)
- No changes to:
 - Physical dimensions tight
 - Geometry need Cf target
 - Al clad material or thickness testing
 - Fuel filler material (AI) testing
 - Fuel cycle length (~26 days) users
 - Margin of safety in TSR bases not less safe!
 - Coolant flow rate (no increase) major infrastructure
 - Subcriticality of elements handling, manufacture, transportation
 - Storage/handling methods major infrastructure
- Elements must "look the same"



Flux performance goals are to retain the levels currently achieved at 85MW with HEU fuel after conversion

4 Managed by UT-Battelle for the U.S. Department of Energ CAK RIDGE

Only the interior of the fuel plates is changed – U_3O_8/AI to U-10Mo

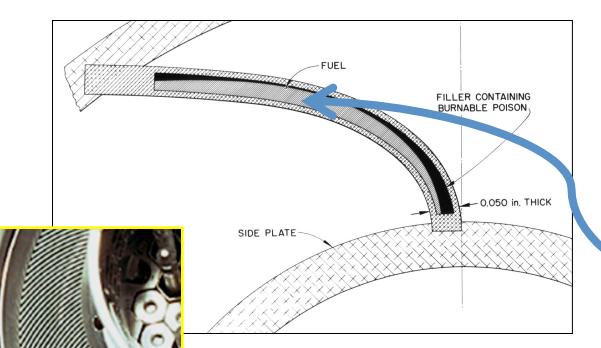
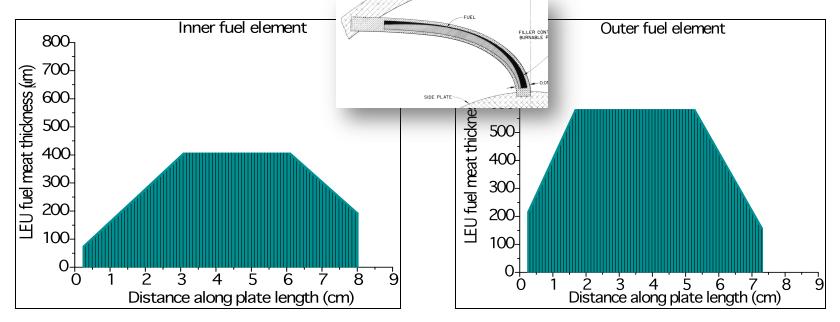


Fig. 15. Contouring the fuel section of the HFIR compact.

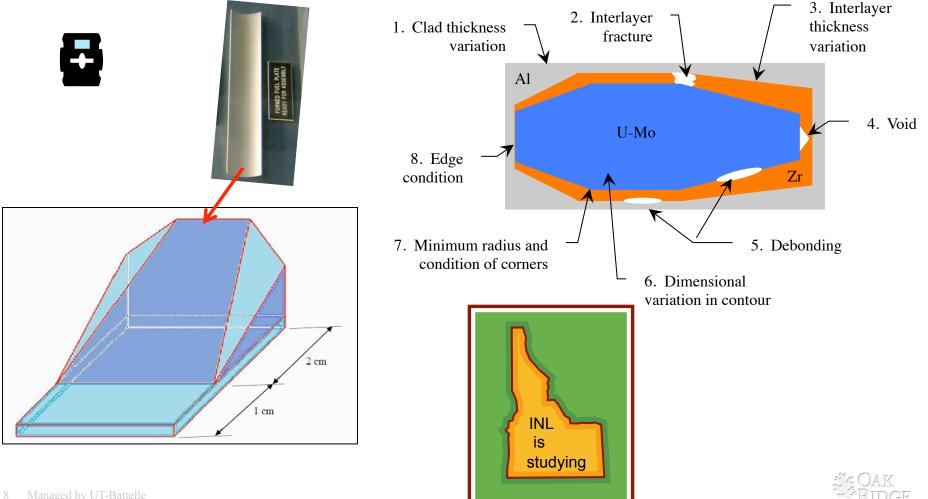

This "hand-formed" shape is unique to HFIR HEU fuel

- Monolithic graded LEU "foil" constraints
 - > ~75 micron minimum thickness
 - > ~750 micron maximum thickness

ORNL staff have performed the neutronics and thermal hydraulics studies to design an LEU fuel

Uranium	Load (kg)
²³⁵ U	25.2
²³⁸ U	101.9
total	127.5

Future HFIR LEU fuel

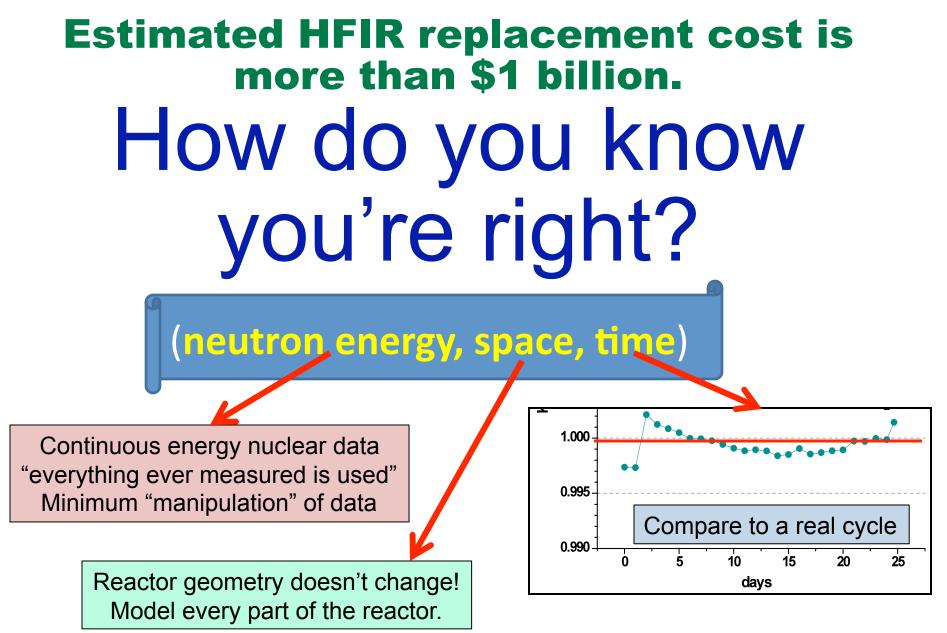

LEU fuel is much denser than HEU; LEU elements are 30% heavier.

One technology change required – radial profile PLUS axial tapering of U-10Mo foil (U/Mo razor edge)

Shapes of bottom edges

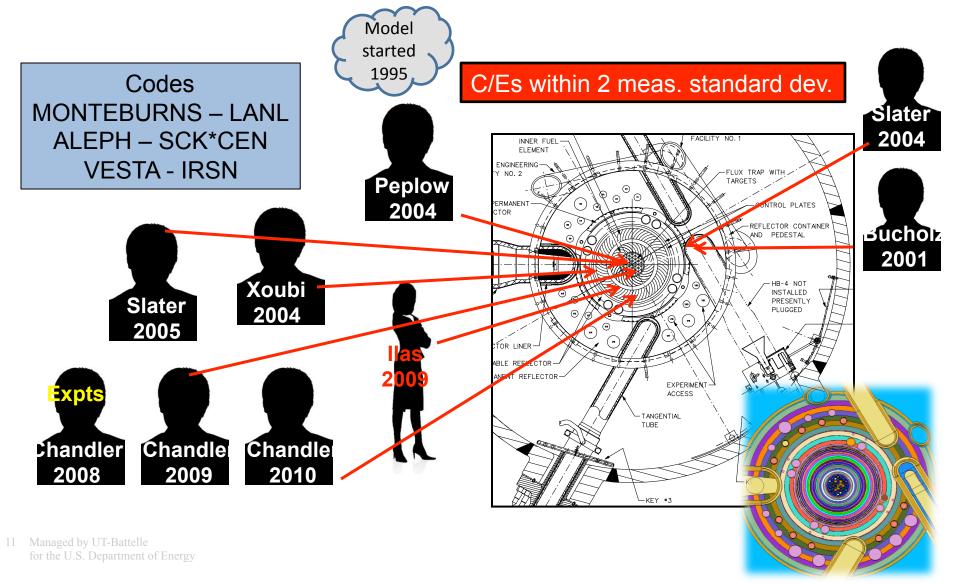
of LEU plates

for the U.S. Department of Energy


LEU in HFIR is theoretically possible but requires a reactor power increase to 100 MW

Showing parity to HEU performance requires examining several locations in the reactor; HEU at 85 MW, LEU at 100 MW

	Time	Fuel	Thermal flux (n/cm²s)	Epithermal flux (n/cm²s)	Fast flux (n/cm²s)	
Central target		HEU	2.2 × 10 ¹⁵	1.3×10^{15}	1.1×10^{15}	Beryllium Reflector Cold Source
	BOC	LEU	2.3 × 10 ¹⁵	1.3×10^{15}	1.1×10^{15}	
		HEU	2.3 × 10 ¹⁵	1.1×10^{15}	1.0×10^{15}	
	EOC	LEU	2.5 × 10 ¹⁵	1.2×10^{15}	1.0×10^{15}	
Cold source edge		HEU	6.9×10^{14}	2.4×10^{14}	0.9×10^{14}	
	BOC	LEU	8.3×10^{14}	2.9×10^{14}	1.0×10^{14}	Beam Tubes HB-3
		HEU	8.4×10^{14}	2.4×10^{14}	0.9×10^{14}	
	EOC	LEU	8.5×10^{14}	2.8×10^{14}	1.0×10^{14}	9
Reflector r=27cm		HEU	6.0×10^{14}	6.5×10^{14}	4.1×10^{14}	(neutron energy, space, time)
	BOC	LEU	7.1×10^{14}	7.8×10^{14}	4.8×10^{14}	
		HEU	8.1 × 10 ¹⁴	6.6×10^{14}	4.0×10^{14}	
	EOC	LEU	7.4 × 10 ¹⁴	7.5 × 10 ¹⁴	4.6×10^{14}	J" CAK


9 Managed by UT-Battelle for the U.S. Department of En

Years of validation studies with Monte Carlo (MCNP code) and Monte Carlo/depletion (MCNP/ ORIGEN) were performed with HEU data

So what could go wrong?

- Significant quantity of molybdenum in reactor 12 kg (more Mo in LEU-fuelled HFIR than HEU today)
- Mo is a "mild" neutron absorber (10b to 100b)
- ²³⁸U impacts 100 kg versus 0.7 kg
- Fast fissions in ²³⁸U; fission product distribution differences; plutonium production

There is a lot of operating experience with 20% enriched fuel but everything happens faster in HFIR

The thermal hydraulic analyses for LEU fuel are bounding not predictive

- LEU design uses 45-year-old HFIR HEU custom-written computer program
- Written to justify safety of HEU fuel, not performance as reactor physics does
- Models single inner element plate and channel and single outer element plate and channel (OK)

• Only models the heat flux from the plate surface and the water in the channel; goal is compute thickness of narrow channel (oxide growth, manufacturing tolerances, bowing, thermal deformation)

The code "does not care" what fuel is inside the plate

13 Managed by UT-Battelle for the U.S. Department of Energ

So what could go wrong?

- Analyses based on HEU tolerances/uncertainties in specifications/measurements; what will LEU be?
- Differences in radiation induced phenomena (swelling)
- Thermally-induced deflection differences
- Flow induced effects? Not likely. U/Mo plate more rigid
- HFIR pressure, coolant velocity, clad material don't change

Our posture: Fuel development and fabrication tasks know the goals they must meet

Each part of the U/Mo fuel fabrication process seems well-known

a) Health Physics Research Reactor fuelled with U-10Mo alloy

b) Contoured rolling of U/Mo foil

c) Placing "Razor" edge on bottom of U/Mo foil

d) Fabricate thin Zr foil for diffusion barrier

e) Borated Al for inner plate

f) Hot isostatic pressing of U/Mo, Zr, Al clad and borated Al if inner plate

g) Since U/Mo foil is contoured, top of pressed plate must be machined to be flat

15 Managed by UT-Battelle for the U.S. Department of Energy

So what could go wrong?

- Bonding; in the HIP process and subsequent forming to involute shapes
- Measurement techniques/uncertainties
- Robustness (variation) of fabrication process; repeatability
- Can the pieces be put together?
- Cost

Our posture: Fabrication knows the goals they must meet but feedback to design process is still possible

With methods reported here, additional analyses offer diminished returns unless new information made available

- Rather than analyses, need data, data, data
- ATR fuel development tests
- Fabrication process development tests
- Instrumentation
- One exception better thermal hydraulics analyses (subject of later talk by Dr. Jim Freels)
- Communication with other reactors as they convert (HFIR last)

Convinced?

Questions/ comments welcome

18 Managed by UT-Battelle for the U.S. Department of Energy

