Status of Cold Neutron Research Facility Installation In HANARO

Sept. 22, 2010 at IGORR 2010

In-Cheol LIM Korea Atomic Energy Research Institute iclim@kaeri.re.kr

CONTENTS

Introduction to HANARO

Cold Neutron Research Facility Installation Project

Status of Beam Instrument Installation

Cold Neutron Flux Measurement Test Results

Remarks

Introduction to HANARO

Korea Atomic Energy Research Institute

http://www.kaeri.re.kr

HANARO Complex in KAERI

HANARO Reactor

High-flux Advanced Neutron Application ReactOr

Multi-purpose Research Reac tor

Reactor Pools

Mission of HANARO

Chronology

1985 JAN **Start of HANARO Project** 1989 JAN Start of HANARO Construction Installation of HANARO Reactor Structure 1993 AUG 1995 FEB **Fuel Loading and Achievement of Initial Criticality** 1996 JAN **15MW Power Operation** 1999 DEC **22MW Power Operation** 2004 NOV **30MW (Design Power) Power Operation started** 2005 MAR First Loading of HANARO Fuel Made by KAER 2006 APR Start of Cold Neutron Laboratory Construction (Completed in May 2008) 2006 JUL Start of Fuel Test Loop Installation (Completed in Feb. 2008) 2008 MAY **Start of Cold Neutron Source System Installation** 2009 SEP 3 First Generation of Cold Neutron

HANARO, Past and Present

http://www.kaeri.re.kr

Reactor Structure and Characteristics

Features

Type Open-tank-in-pool
Power 30 MW _{th}
Coolant Light Water
Reflector Heavy water
Fuel Materials enriched U ₃ Si, 19.75%
Absorber Hafnium
Reactor Building Confinement
Max Thermal Flux 5x10 ¹⁴ n/cm ² s
Typical flux at port nose
2x10 ¹⁴ n/cm ² s
7 horizontal ports & 36 vertical holes
Vertical hole for cold neutron source
Operation Cycle 28 days@38 days

http://www.kaeri.re.kr

Primary Cooling System

Reactor Hall, 2010

Status of Experimental Facilities

Installed

- IR1: Fuel Test Loop
- CT, IR2: Capsule Irradiation& RI Production
- **OR** : Capsule Irradiation & RI Production
- **IP**: RI Production
- HTS : Hydraulic Transfer System for RI Production
- PTS : Pneumatic Transfer System for Neutron activation Analysis
- NTD : Neutron Transmutation Doping of Silicon CNS : Cold Source Installation

Horizontal Tubes

Installed

- ST2 : High Resolution Powder Diffractometer, Four Circle Diffractometer
- NR : Neutron Radiography Facility
- **CN** : Cold Neutron Guide
- IR : Ex-core Neutron-irradiation Facility for BNCT & DNR
- ST1 : PGAA and RSI
- ST3 : High Intensity Powder Diffractometer

Under-development

- ST3 : Bio-diffractometer
- ST4 : Triple Axis Spectrometer

Reactor Operation Record

Research and Development 14

Regional Cooperation for Neutron Science

Cold Neutron Research Facil ity Installation Project

Cold Neutron Research Facility

http://www.kaeri.re.kr

IGORR 2010

View of Cold Neutron Research Facility

Construction of Cold Neutron Laboratory(04.1-08.11)

Installation of CNS for the Operating HANARO

http://www.kaeri.re.kr

IGORR 2010

Construction &

Neutron Guide Installation

Neutron Guide Installation(2)

Strategy

⊅

Combination of imported parts and local fabrication

Local Fabrication

- Fabrication : Super-mirror guides(M=2, >150 m) with different shape 30m Ni guide for two SANS as collimator 10m super-mirror guide as beam flight path for HR-SANS, Bio-REF
- Coating : A sputtering machine was developed. Super-miror(M=2) has minimum reflectivity of 88 percent.

Cooperation

- MTF(consultation) & SwissNeutronics(Supply of front guides)
- Foreign experience (ILL, HMI, PSI)

Neutron Guide Installation(3)

Guide (dimension)		incline angle	Curvature	Length of curved part	Line of sight	Instrument
CG1 (20x150mm)		+3.04	400m↗	26m	8m	(Mirror-Test) (V-REF)
CG2	CG2A (50 x 50mm)	+2.03	800m⊅	24m	17.9m	(40M-SANS)
(50x150mm)	CG2B (50 x 95mm)		350m⊅	26.3m	11.8m	***
CG3 (30x150mm)		+0.54	2500m↗	25.6m	24.5m	(DC-TOF)
001	CG4A♪ (50x50mm)	-0.93	2500m⊅	32m	31.6m	***
(50x150mm)	CG4B ⊅ (50x95mm)		600m ∖	16m	15.5m	(Hr−SANS)♪ (Bio−REF)♪ (18M−SANS)
CG5 (50x150mm)	CG5A (50x150mm).	-2.50	1500m∖∍	26m	24.5m	(Cold-TAS)

Cold Neutron Instrument Arrangement

Cold Neutron Instrument Availability

To be available from Nov. 2010

9 40m-SANS, 18m-SANS

To be available from the 2nd half of 2011

😌 REF-V, Bio-REF, HR-SANS

Others from CNRF Projects

Cold TAS : First half of 2012

DC-TOF : Depending on the availability of He-3

Sample Environments Available in Nov. 2010 Automatic Sample Exchanger in Room Temperature Circulation Bath (Temperature Control -25°C/90°C)

http://www.kaeri.re.kr

IGORR 2010

REF-V

Rx REF REF-V (2006/6 User Open)

CN REF-V (2010/4 relocation)

Instrument Characteristics

Monochromator Wavelength Wavelength Resolutio n Filter system Neutron Flux at sampl e	Vertical focusing PG(002) 4.75 Å, 2θ _M =90° $\Delta\lambda/\lambda < 1.0\%$ LN ₂ , Cooled Be ~ 3.5 x 10 ⁶ n/cm ² /sec
Single detector	He ³ 6 atm.
1-D PSD (plan)	8 x 12 cm, efficiency 90% at 4Å
Polarizer, Analyzer	Fe/Si_super mirror(m=3)
Spin flipper	Mezei type, FR=>0.98
Polarization Efficiency	P =>0.9
Q region	0.003 ~ 0.4 Å ⁻¹
Min. reflectivity	10 ⁻⁸

Sample Environment Facility

High Temp. Vacuum Chamber : ~650 K Low Temp. CCR : 10 K < Magnetic Field : Max. 0.8 T, Electromagnet Max. 500G, Helmhlotz Coil Cryo-Furnace : Plan

Bio-REF

Beam Flight Path & Sample Stage

*Completed*K-→└-> *In preparation*

* Applications in Nanotechnology & Biotechnology

- Nano-structured polymer thin films
 - Polymer/metal nanostructures
- Bio mimetic materials
 Langmuir monolayer characterization.

• Wetting transition on water surface

• Protein (DNA) adsorption in solution.

- Nano-porous materials characterization Poly-electrolytes at the air/water interface
 - Thin Films at high pressure
 Bio mimetic materials

Bio-membranes Magnetic multilayer Enzyme, proteins Po http://www.kaeri.re.kr

Polymer Brush Adhesion

Wetting/de-wetting

SPECIFICATIONS

Monochromator-to-sa mple distance	2 m		
Sample-to-detector di stance	2 m		
Sample Area	500 mm ²		
# of monochromators	1 Set (4 ea)		
Filter	Beryllium(Cooled)		
• Q _z range (Liquid) (Solid)	0.002 - 0.6 Å ⁻¹ 0.002 - 0.25 Å ⁻¹		
Wavelength	4.75 Å		
Measurements	Solid/Liquid Air/Liqu id Air/Solid		
Minimum reflectivity	1 X 10 ⁻⁸		
Flux	8.0 X 10 ⁶ n/cm ² /sec		
Detector (Liquid) (Solid)	2D PSD Point type		
Sample environments	Temp, Press Cell Liquid Cell, LB		
Strategies	Under construction		

IGORR 2010

HR-SANS (KIST)

Cold Neutron Triple-Axis Spectrometer

Guide shield and monochromator installed in Aug. 2009

Shield performance test in Dec. 2009

http://www.kaeri.re.kr

IGORR 2010

New Project for Cold Neutron Activation Station(CONAS)

(April 2010~April 2012)

Cold Neutron Flux Measurement Results

Neutron Flux Measurement Results (Interim Report)

Measurement

Gold foil **TOF**♪

Position	<mark>ہ</mark> [Å]	Thermal flux (n/cm²s)	Flux with average wave
CG1	<u> </u>	2 01E+09	8 08E+08
CG2A	4.54 *	5.82E+09	2 31E+09
CG3	3.87 *	6.74E+09	3.14E+09
CG4B	4.83 [*]	7.71E+09	2.87E+09
CG5	4.21 [*]	8.16E+09	3.49E+09
BIO-REF	4.90 ¹	2.79E+09	1.02E+09
DC-TOF	4.16 [*]	2.58E+09	1.12E+09
REF-V	4.57 [*]	1.49E+09	5.87E+08
HR-SANS	4.90 ¹	3.57E+09	1.31E+09
Cold-TAS(#1)	4.03+	5.37E+09	2.40E+09
Cold-TAS(#2)	4.03 ⁺	3.58E+09	1.60E+09
18M-SANS	4.90 ¹	4.96E+08	1.82E+08
40M-SANS	4.97 ²	7.76E+07	2.81E+07

¹ Assumed value, ² Iterated value using spectrum measurement * Calculation from McStas simulation + Calculation from VITESS simulation

DC-TOF Neutron Spectrum

 Measurement results showed more cold neutrons than the Monte-Carl o calculation.

•The measurement was made in vacuum condition.

Cold Neutron Gain @ CG2A Guide

- Gain is larger than 10 for over-5Å neutrons. (Target :10-20)
- The gain will be greater that 15 if the measurement is made in vacuum.

The SANSs will be available to the users from this Nov.

The activities to complete the installation and commissi oning of instruments will continue together with the inst allation of new CN activation stations.

The user programs will be expanded in cope with the progress in beam instruments.

39

IGORR 2010♪

HANARO Symposium 2010 to celebrate the inauguration of CNRF Daejeon, Rep. of Korea Nov. 1-2, 2010

http://hanarosymposium.kaeri.re.kr

Embedded Meetings

- IAC(Int. Advisory Committee) meeting
- IAEA meeting on RR coalitions and use r's network (NB in East Asia-pacific reg ion)

IGORR 2010

40

