TRTR/IGORR Meeting, Knoxville, USA, 20-24 Sept. 2010

The IAEA Activities in Support of Enhanced Utilization and Applications of RRs

<u>D. Ridikas¹</u>, P. Adelfang², K. Alldred², E.E. Bradley², A. Carrigan², C. Morris², R. Sollychin², S. Tozser²

International Atomic Energy Agency

1) Department of Nuclear Sciences and Applications (NA)

2) Department of Nuclear Energy (NE)

Wagramer strasse 5, PO Box 100, 1400 Vienna, Austria

Background

Source: IAEA RRDB, March 2010

TOTAL:	672
Operational	<u>234</u>
Temp. shutdown	11
Under construction	6
Planned	2

Shutdown/Decommissioned 419

Operational RRs are distributed over 56 countries Russia ~48,

USA ~41,

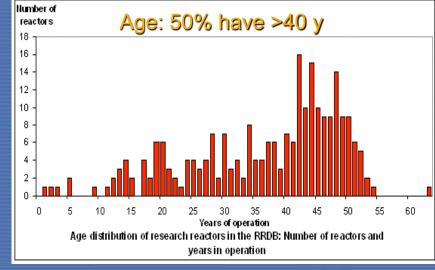
China ~15,

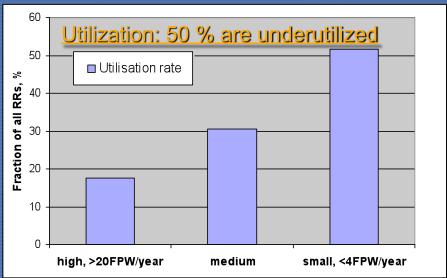
Japan ~13,

France ~11,

Germany ~10

Region	Operational RRs
Africa	9
Americas	66
Asia/Pacific	59
Europe (with Russia)	100


Key issues and challenges

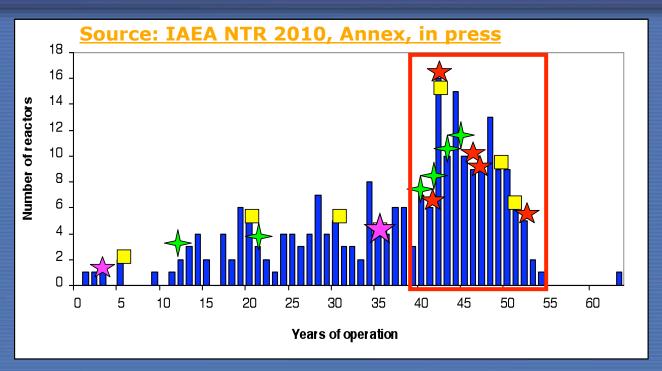

Source: IAEA RRDB, March 2010

- RR underutilization
- Ageing & needs for refurbishment
- Fuel cycle issues
- Requests for new RRs

• ...

Key issues and challenges: supply of Mo-99

- Over 80% of diagnostic nuclear medical imaging uses radiopharmaceuticals containing technetium-99m (99mTc), entailing over 30 million investigations per year
- Over 95% of the ⁹⁹Mo required for ^{99m}Tc generators is produced by the fission of uranium-235 targets in nuclear research reactors


Source: IAEA NTR 2010, Annex, in press

and others

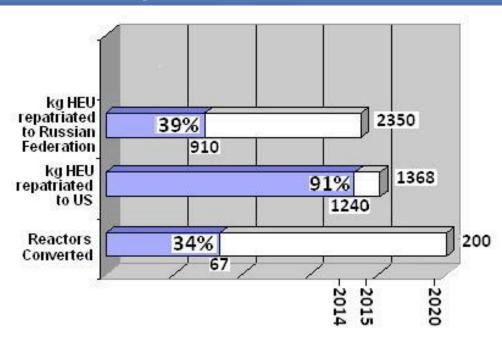
Key issues and challenges: supply of Mo-99

 \star

The five major RR currently producing more than 95 % of 99Mo

· The OPAL (Australia) and Maria (Poland)

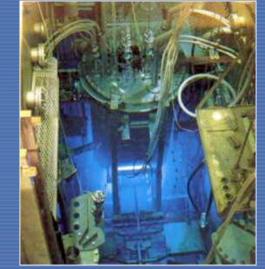
• Existing RR that are already used by regional ⁹⁹Mo producers or for which commissioning is underway • Existing RR which are now studying the feasibility of providing irradiation services.


Latest news:

NRU (Canada) and HFR (Netherlands) are back to operation!

Maria (Poland) & LVR-15 (Czech) have entered as new important players!

Key issues and challenges: reduction of HEU


- Reduction of HEU through the Global Threat Reduction Initiative (GTRI)
 - → 67 RR cores converted to LEU, 27 RR are expected/ongoing
 - → Spent and fresh fuel take back programmes

Latest news from South Africa:

⇒SAFARI-1 core is entirely LEU since June 2009!

→HEU targets converted to LEU by the end of 2010!

Other countries, where HEU is being removed:

Bulgaria, the Czech Republic, Germany, Hungary, Kazakhstan, Latvia, Libya, Poland, Romania, Serbia, Uzbekistan and Vietnam.

RR related efforts within the IAEA programmes

→ Cross cutting activities on RRs: NA, NE, NS, TC, ...

To address

- RR underutilization
- Ageing and needs for refurbishment
- Fuel cycle issues
- Requests for new RRs

Major Programme D: Nuclear Science

• ...

Sub-programme D2:

Research Reactors (RR)

Project D2.01:

Enhancement of utilization & applications of RRs

Project D2.02:

RR infrastructure, planning & innovation

Project D2.03:

Addressing RR fuel cycle issues

Project D2.04:

Research Reactor operation

- Activity 1
- Activity 2
- Activity 3
- •

Activity: Networks and Coalitions (1)

Objective:

enhanced utilisation and sustainability through regional grouped entities, provision of new products & services, access for countries without RRs, ... Role of the IAEA:

"facilitator" & "catalyst"- generate and coordinate ideas/proposals/ventures, provide initial support (meetings, training, studies/analyses, etc.)

Status, March 2010:

BRRN – Baltic Research Reactor Network, multipurpose, 10MS EARRC – Eurasian RR Coalition, isotope production, 5Ms EERRI – Eastern European RR Initiative, multipurpose, 6MS CRRC – Caribbean RR Coalition, mainly NAA, 3 MS

Future:

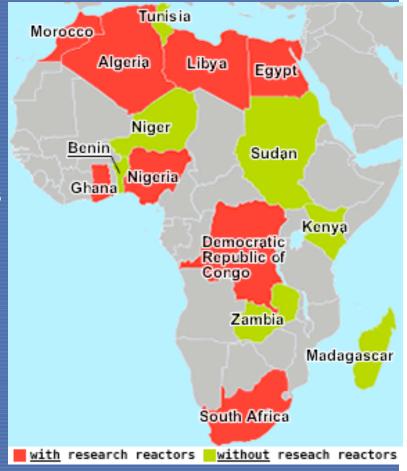
- Strengthen and consolidate the existing 4 RR coalitions
- Assist in developing common strategic and business plans
- Provide support towards maturation, self-reliance and sustainability

Ensure access to countries without RRs

Activity: Networks and Coalitions (2)

ARRN – African RR Network, NAA and Education & Training, 16 MS

Status:


Initiated in 2009 and supported through RAF4022

Activities:

- RR safety related issues
- Proficiency tests in NAA and other techniques
- Education and training

Future:

regional rather than continental network
 might be the right approach

Activity: Networks and Coalitions (3)

MRRUN – Mediterranean RR Users' Network, multipurpose, 6 MS

Status:

Created in 2008 in Vienna, supported through RB

Activities:

little/no due to absence of regional TC projects

Future:

- Through RER4032 and RAF4022 support will be ensured
- New meeting will take place next week at IAEA, 15 MS will take part
- Concept of a new interregional TC project

Activity: Networks and Coalitions (4)

APRRN – Asia-Pacific RR Network, neutron scattering, 11 MS

Status:

Discussed in 2009, supported through RB

Activities:

- research and applications
 with neutron beams
- ANSTO as an IAEA CC
- existence of AONSA

Future:

- 2nd meeting is planned in October (Korea)
- formulation of a new regional TC project

Activity: Coordinated Research Projects (1)

Active CRP 1496 (2008-2012), jointly coordinated and supported by NA, NE and NS:

- Innovative methods in RR Analysis: Benchmark against Experimental Data on Neutronics and Thermalhydraulic Computational Methods & Tools for Operation & Safety Analysis of RRs
 Objectives:
 - encourage cooperation and exchange of information in the area of RR related numerical analysis
 - facilitate and support RR design, operation, and safety
 - benchmark against experimental data existing neutronics and thermalhydraulic computational methods and tools that are routinely utilized for operation and safety analysis of RRs

9 Research Contracts + 8 Research Agreements + 2 Observers

- 1. Algeria
- 2. Argentina
- Australia
- 4. Bangladesh
- 5. Canada
- 6. Egypt
- 7. France
- 8. Germany
- 9. Ghana
- 10. Italy
- 11. Nigeria
- 12. Pakistan
- 13. Romania
- 14. South Africa
- 15. Syrian Arab Republic
- 16. USA
- 17. Uzbekistan

Expected output:

- report on comparison of experimental and theoretical results
- data base of RR characteristics, experiments and data used for benchmarks
- recommendations on open issues for future R&D activities involving RRs
- increased cooperation in RR related experiments and modelling

Activity: Coordinated Research Projects (2)

Active new CRP 1575 (2009-2012):

Development, Characterization and Testing of Materials of Relevance to Nuclear Energy Sector Using Neutron Beams (SANS, diffraction and neutron radiography)

Objectives:

- investigation and characterization of materials relevant to nuclear energy applications
- optimization and validation of experimental and modelling methods
- creation of a database of reference data for nuclear materials research
- enhancement of the capacity of research reactors for nuclear materials research

8 Research Contracts + 9 Research Agreements

- Argentina
- Australia
- Brazil
- China
- Czech Republic
- 6. France
- Germany
- 8. Hungary
- Indonesia
- Italy
- 11. Japan
- 12. Korea

17.

- 13. The Netherlands
- 14. Romania
- Russian Federation 15
- 16. Switzerland USA

Expected output:

- Creation of multilateral network in the field of advanced nuclear materials research
- Creation of an experimental reference database for models and calculations
- Final project publication

Activity: Coordinated Research Projects – NEW (3)

Enhanced utilization & sustainability

→ 1.4.2.1/11 CRP on Development and Implementation of Routine

Automation in Advanced NAA Laboratories (2012-2015)

Neutron Beams

→ 1.4.2.1/11 CRP on advanced neutron imaging and tomography techniques for determination of elemental and phase composition of material samples and objects (2012-2015)

Radioisotopes, Mo-99

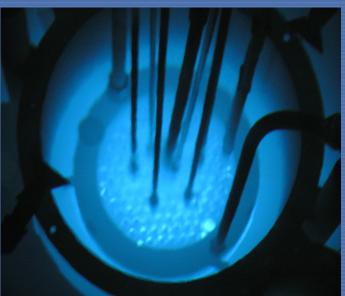
→ 1.4.2.1/04 CRP on the Feasibility of Low-specific-activity, Non-HEU, Mo-99 Production, Separation and Distribution (2011-2014)

Activity: Technical Cooperation Projects (1)

In addition to the "usual" support through the TC projects (14 national + 4 regional), assistance in planning and building the 1st RR

<u>Country</u>	<u>Title</u>	Year Started
Algeria	Development and Improvement of Experimental and Analysis Techniques for the Es Salam Reactor	2005
Azerbaijan	Conducting a Feasibility Study for Planning and Establishing a Research Reactor	2009
China	Residual Stress Measurement using Neutron Diffraction for Industrial Application	2007
Colombia	Integral Use and Safety of the Nuclear Reactor IAN-R1	2005
Egypt	Development of Neutron Irradiation and Beam Line Facilities for Effective Use of the Research Reactor	2005
Greece	Development of a Regional Neutron Scattering Centre	2007
Jordan	Establishing a Research Reactor	2009
Kazakhstan	Introducing High Performance Neutron Activation Analysis for Industrial Needs	2009
Libya	Utilizing the Research Reactor	2009
Malaysia	Capability Building in Planning for a High-power Reactor and its Application	2009
Morocco	Use of the Lateral Channels of the TRIGA Mk. II Research Reactor, Phase III	2007
Peru	Modernizing and Improving the Utilization of the RP10 Reactor	2009
South Africa	Upgrading of the Neutron Beam Line Facilities of the SAFARI-1 Research Reactor	2007
Sudan	Sudan Nuclear Research Reactor Project	2010

<u>Region</u>	<u>Title</u>	Year Started
Africa	Enhancing Research Reactor Utilization and Safety	2009
GCC	Developing a Regional Nuclear Training Centre for Capacity Building and Research	2009
Europe	Enhancement of the Sustainability of Research Reactors and Their Safe Operation Through Regional Cooperation, Networking and Coalitions	2009
Latin America	Supporting a Sustainable Increase in the Use of Research Reactors in the Latin American and Caribbean Region through Networking, Exchange of Experiences, Knowledge	2009



Activity: New RRs (1)

Last licensed RR

TRIGA Mark II, Morocco; 2007 support through national and regional TC

- 2 MW, in core flux 4*10¹³ n/(s cm²)
- Fuel: UZrH, LEU 19% U-235, Coolant: H₂O, Moderator: H₂O+ZrH
- Reflector: graphite, Control: B₄C
- Support to nuclear power, education & training, basic research
- Material research, isotope production, activation analysis, radiography, etc.

Activity: New RRs (2)

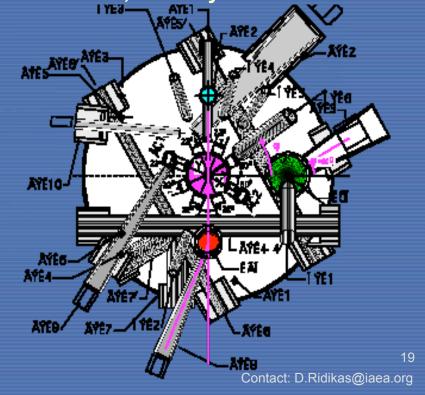
1st criticality in May 2010

CARR, China

support through national TC

- 60 MW, in core flux ~1*10¹⁵ n/(s cm²)
- Fuel: 19% U-235, Moderator: H₂O, Reflector: D₂O
- Replacement for 10MW HWRR (2007)
- Multipurpose RR with the main objectives in basic research
- Open to users from universities, governmental laboratories, industry

Activity: New RRs (2)

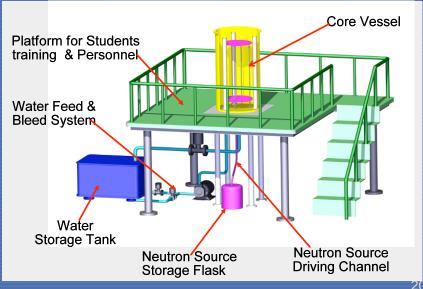

1st criticality expected in 2010

PIK, Russia

- 100 MW, in neutron trap flux ~4.5*10¹⁵ n/(s cm²)
- Fuel: ~90% U-235, Moderator & Reflector: D₂O
- Replacement for WWR-M (18MW)
- Multipurpose RR with the main objectives in basic research

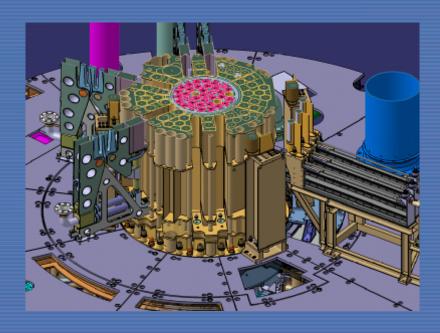
Open to users from universities, governmental laboratories, industry

Activity: New RRs (3)


Next licensed sub-critical facility

Jordan Sub-Critical Assembly - JSA, Jordan, expected in 2010 support through national TC

- Zero power (k_{eff}=0.94), light water moderated
- Fuel: PWR-structure pattern fuel rods, UO₂, 3.4% U-235
- Dedicated educational tool for teaching, training and experimental research
- In support of the future multipurpose RR (~5MW)

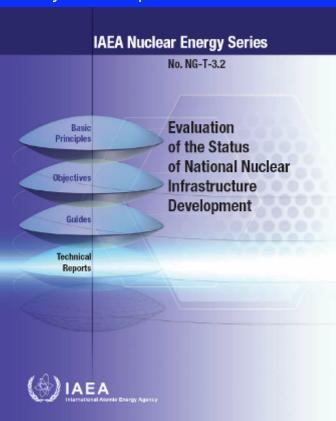

Activity: New RRs (4)

RR under construction

JHR, France, expected in 2014

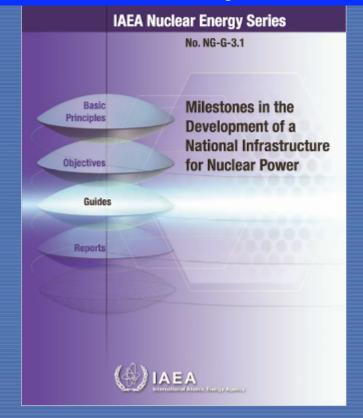
- MTR pool, 100 MW, in core flux ~1*10¹⁵ n/(s cm²)
- Fuel: Ref. UMo LEU, Backup: U₃Si₂ 27 % U-235
- In support of future nuclear power, Gen3+ & Gen4
- Dedicated for material/fuel irradiation and testing
- Other applications envisaged (isotope production)
- International consortium

Active TC projects: Azerbaijan, Jordan, GCC and Sudan **Activity: New RRs (5)** Building a RR: phases MILESTONE 1 MILESTONE 2 MILESTONE 3 Ready to make an Research Reactor Ready to invite bids Ready to commission and construction informed commitment operate the first RR for the first RR under consideration to a RR programme Operation, maintenance PHASE 3 Waste management Activities to implement a first RR PHASE 2 Preparatory work for the construction of a RR after a policy decision has been taken PHASE 1 Considerations before a decision to construct a Research Reactor is taken Project elaboration Feasibility study Construction **Operation / Decommissioning** Commissioning **Bidding process** Decision adopted $\sim 5 - 10$ years


New concepts: Philippines, Tunisia, Saudi Arabia, Singapore,...

Activity: New RRs (6)

Approach for the 1st RR: similarity to the 1st NPP


Guidelines document (available):

Guidelines and questionnaires for preparation of country status reports

Milestones document (in progress):

Milestones in the Development of a National Infrastructure for a Research Reactor Programme

Activity: New & old RRs (7)

Preparation of Strategic and Business Plans

IAEA-TECDOC-1234

The applications of research reactors

Report of an Advisory Group meeting held in Vienna, 4–7 October 1999

INTERNATIONAL ATOMIC ENERGY AGENCY

August 2001

IAEA-TECDOC-1212

Strategic planning for research reactors

Guidance for reactor managers

INTERNATIONAL ATOMIC ENERGY AGENCY

April 2001

Ref. IAEA TECDOCs 1234 and 1212

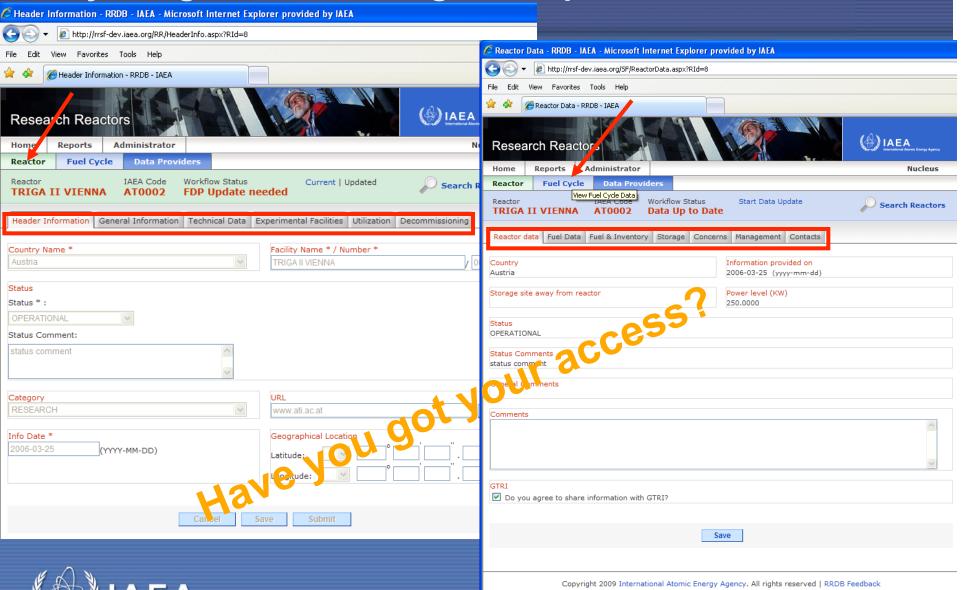
Activity: New & old RRs (8)

Components of a Plan

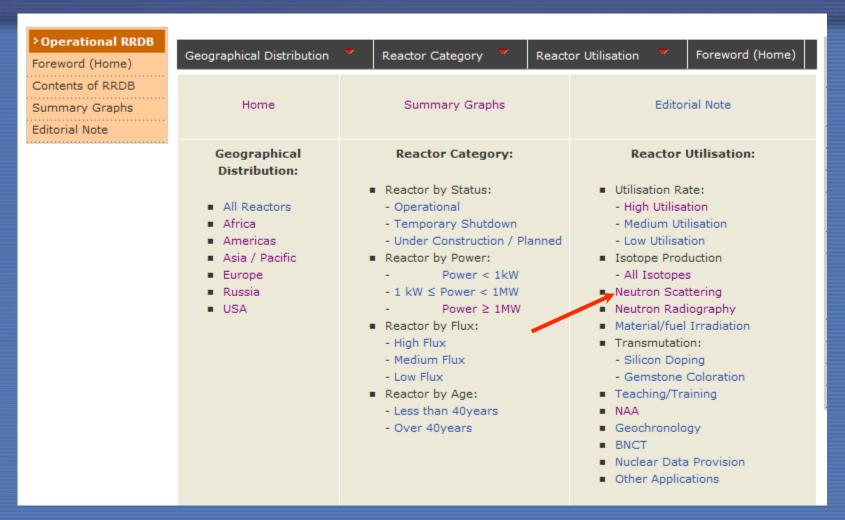
Facility Status
Capabilities
What can I do?


Current Stakeholder
Requirements/Needs
What should I do?

Production of a strategic plan supports an increase in utilization by increasing capabilities and creating new requirements



Support/assistance from the IAEA is dependent on having a demonstrated need, i.e. ... a strategic plan


From evaluation to self evaluation -> Performance Indicators

The IAEA RRDB: since April 2010 on-line updates by designated RR managers are possible!

RRDB of operational RRs World Wide: in support of RR coalitions!

RRDB of operational RRs is available at:


http://www-naweb.iaea.org/napc/physics/research_reactors/
or USB Memory Stick, <10MB, no internet is needed!</pre>

RRDB of operational RRs World Wide:

Neutron Scattering Facilities

in support of RR coalitions! Neutron Scattering Facilities - "Click here for details"

44 RRs employ neutron beams; they are distributed over 30 MSs

This database contains 44 research reactors performing Neutron Scaterring distributed over 3

1	Algeria	ES-SALAM	WATER	15000	2.1E14	4.2E12	1992-	02-17
2	Algeria	NUR	POOL	1000	5.9E12	4.0E12	1989-	03-24
3	Australia	OPAL	POOL	20000	3.0E14	2.1E14	2006-	08-12
4	Austria	TRIGA II VIENNA	TRIGA MARK II	250	1.0E13	1.7E13	1962-	03-07
5	Bangladesh	TRIGA MARK II	TRIGA MARK II	3000	7.5E13	3.8E13	1986-	09-14
6	Brazil	IEA-R1	POOL	5000	4.6E13	1.3E14	1957-	09-16
7	Canada	MNR MCMASTER UNIV	POOL	3000	1.0E14	4.0E13	1959-	
8	Canada	NRU	HEAVY WATER	135000	4.0E14	4.5E13	1957- Temp	Hot
9	Chile	RECH-1	POOL	5000	7.0E13	5.0E13	1974-	Day
10	Czech Republic	LVR-15 REZ	TANK WWR	10000	1.5E14	3.0E14	1957-	We
11	France	HFR	HEAVY WATER	58300	1.5E15		1971-	MW
12	France	ORPHEE	POOL	14000	3.0E14	3.0E14	1980-	exp
13	Germany	BER-II	POOL	10000	2.0E14	1.4E13	1973-	Iso
14	Germany	FRG-1	POOL	5000	1.4E14	4.5E13	1958-	• T
15	Germany	FRM II	POOL	20000	8.0E14	5.0E14	2004-	Net
16	Greece	DEMOKRITOS (GRR-1)	POOL	5000	1.0E14	4.5E13	1961- Temp	• 0
		NUCL.						Neu
17	Hungary	BUDAPEST RES.	TANK	10000	2.5E14	1.0E14	1959-	Net

9-14 9-16

Other Uses

Fast Flux,

Utilization 24 **Hours per Day** Days per Week 21 Weeks per Year MW Days per Year 2160 Materials/fuel test NO experiments **Isotope Production** 99Mo. 131I.192lr. 32P 33741 Total Activity (GBq) **Neutron Scattering** HRPD, NRF, HRSANS, FCD/TD, SANS, PD 2100 On-line beam hours **Neutron Radiography** On-line beam hours: N/A **Neutron capture** NO therapy **Activation Analysis** INAA number of samples irradiated 300 NO Transmutation Geochronology NO Teaching Number of students: N/A Training Number of operators/experimenters trained: 13

RRDB of operational RRs is available at:

http://www-naweb.iaea.org/napc/physics/research_reactors/

or USB Memory Stick, <10MB, no internet is needed!

Contact Us | Site Index | News Feeds | Signup for News

About IAEA

Our Work

Publications Data Centre

Search this site

Go

You are in : Home » Our Work

Our Work

Security

Promoting Safeguards & Verification Promoting Safety &

Promoting Science & Technology

Pillars of Nuclear Cooperation

The IAEA works for the safe, secur peaceful uses of nucl science and technology. Its key re tribute to international pez oals for social, the World's Mi economic an development.

Three main pillars - or areas of work - under

Safeguards & Verification

The IAEA is the world ectorate, with more than four decades of verificatio Inspectors work to verify that safeguarded nucl activities are not used for

military purposes. The A responsible for the nuclear file in Iraq as mandated by the IN

Safety and Se

(elps countries to upgrade nuclear safety and security, and to pr are for and respond to emergencies. Work is keyed to international conventions, standards and expert guidance. The

main aim is to protect people and the environment from harmful radiation exposure.

More »

Science & Technology

The IAEA helps countries mobilize peaceful applications of nuclear science and technology. The work contributes to goals of sustainable development in fields of energy, environment, health,

and agriculture, among others, and to cooperation in key areas of nuclear science and technology. More »

Programmatic Web

Safeguards

Safety & Security

Nuclear Science & Applications

Nuclear Energy

Technical Cooperation

Legal Affairs

> Laboratories

Seibersdorf & Vienna Monaco

Research and Projects

Coordinated Research

Knowledge

Management

International Centre for Theoretical Physics (ICTP), Trieste, Italy

Technical Cooperation

Programme Areas

Direct Links to IAEA's Departmental Websites:

- Nuclear Energy
- Nuclear Safeguards
- Nuclear Safety and Security
- Nuclear Sciences and Applications
- Technical Cooperation

RR @ Nuclear Energy: http://www.iaea.org/OurWork/ST/NE/NEFW/rrg home.html

RR @ Nuclear Safety: http://www-ns.iaea.org/tech-areas/research-reactor-safety/

RR @ Nuclear Applications: http://www-naweb.iaea.org/napc/physics/research_reactors/index.html

International Conference on

Safe Management and Effective Utilization

Hosted by the Government of the Kingdom of Morocco

through the National Centre for Nuclear Energy, Sciences and Technolog

www.laea.org/meetings - CN-188

Five main topics to be addressed:

- 1. Utilization & Applications of RRs
- 2. Operation & Maintenance
- 3. New RR Projects
- 4. Safety of RRs
- 5. Spent Fuel Management, Waste & Decommissioning

Jointly by NAPC, NEFW, NSNI and TC

Thank you for your attention!