

energie atomique · energies alternatives

THERMAL ASSESSMENT OF THE CALIPSO IRRADIATION DEVICE FOR THE JULES HOROWITZ REACTOR

D. Moulin, S. Christin, C. Biscarrat

TRTR / IGORR 2010

Knoxville, TN, USA September 19-23, 2010

damien.moulin@cea.fr

NUCLEAR ENERGY DIVISION

Introduction

œ

Good knowledge of the temperature of samples under irradiation in Material Testing Reactors is very important.

Best results have been obtained up to now using a stagnant liquid metal like NaK as the fluid environment

- The search for a better temperature control and the reduction of experimental uncertainties requires having a liquid metal flowing around the samples
 This is the aim of the CALIPSO device, a NaK loop for material irradiation in the core of the Jules Horowitz Reactor (JHR)
- Presentation of the thermal calculations with an optimized geometry
 - General description,
 - Thermal modeling,
 - Main results.

General description : overall dimensions

- The containment rig is a double wall shell
 Total length : 6800 mm
- Outer diameter in the lower part : 33 mm
 for heat exchanger and samples
- Outer diameter above the fissile zone : 83 mm for electromagnetic pump and heater
- Outer diameter above the interface with JHR vessel head : 138 mm for electrical connections, gas control and rig handling

 \mathfrak{E}

General description : operating principle

Thermal modeling : the REFLET code

•

Thermal modeling : limit conditions

œ

Nuclear heating

Profile based on photonic calculations in the JHR core,
 Similar in nature to a cosine shape in the active zone and an exponential shape above and below the active zone,

Different reactor power values, different locations of irradiation and calculation uncertainties

> A wide range of values : 5 W/g – 21 W/g

- Heat exchange with the JHR primary circuit
 - Inlet temperature : 30°C
 - Water speed : ~ 8 m/s
 - Heat transfer coefficient : ~ 3.5 10⁴ W.m⁻².°C⁻¹
 - > Test device not very sensitive to the variations of the primary circuit conditions

Results : quality criterion

Temperature profiles in NaK at an optimum operating adjustment

Results : quality criterion

		Upper limit	Optimum	Lower limit
cea	ΔT_{NaK} criterion	7.5°C	2.2°C	7.5°C
energie atomique + energies attema	NaK mean temperature (over - 275mm and + 275 mm)	350°C	328°C	300°C
	Power of electrical heater	13 630W	10 075W	5 925 W

7.5°C has been chosen as the limit of the optimum operating zone regarding experimental targets

NUCLEAR ENERGY DIVISION

Results : heat exchanger

 To adapt the NaK temperature level to the experimental needs (depending on the type and shape of samples), one can control heat loss to the primary circuit

by adjusting the length of exchange in the bottom of the rig, i.e. the level of NaK flow reversal (adaptation done in hot cells before irradiation)

NUCLEAR ENERGY DIVISION

Results : NaK flowrate

Decreasing NaK flowrate reduces the optimum operating range

T deviates outside of the limits (>7.5°C) for 1 m³/h

Higher flowrates than 2 m³/h were not considered due to pump limitation

NUCLEAR ENERGY DIVISION

 \tilde{A}

Results : management of temperature fluctuations

CECI

During reactor cycle, small variations of sample temperature can be compensated

by controlling the electrical power of the heaters

while keeping the NaK flowrate constant at its nominal value

• Fluctuation of ± 4% of nuclear heating

Ieads to ~ 5°C variation of the NaK temperature,

easily managed by ~ 800 W power variation of the electrical heater

the quality criterion is only slightly affected.

	Nuclear heating	Electrical Power	NaK average temperature	$\Delta T_{_{NaK}}$ criterion
Reference	17.6 W/g	10 073 W	328°C	2.2 °C
Nuclear perturbation	17.6 - 0.7 W/g	10 073 W	328 - 6°C	4.5 °C
Elec. heater adjustment	17.6 - 0.7 W/g	10 073 +790 W	328°C	5.3 °C
Nuclear perturbation	17.6 +0.7 W/g	10 073 W	328 +4°C	4.2 °C
Elec. heater adjustment	17.6 +0.7 W/g	10 073 -751 W	328°C	3.8 °C

NUCLEAR ENERGY DIVISION

11

Summary and future work

• Main results :

- Before irradiation :
 - Modulation of the heat exchanger length will give flexibility to CALIPSO to cope with the quality criterion while covering a wide range of nuclear heating and NaK temperature for different types of samples
- During irradiation :
 - > NaK flowrate has to be kept constant : 1.5 m³/h to 2 m³/h are the optimal range,
 - > The electrical power of the heaters will be adjusted to compensate temperature changes due to nuclear heating fluctuation

• Future work :

- The manufacturing of an out-of-pile prototype is under way.
 - > to qualify the performance of the main components
 - > to validate the thermal assessment of such a test device toward its licensing for irradiation in the JHR